Improvement of the weighted essentially nonoscillatory scheme based on the interaction of smoothness indicators

2017 ◽  
Vol 85 (12) ◽  
pp. 693-711 ◽  
Author(s):  
Delin Chai ◽  
Zhongguo Sun ◽  
Zhu Huang ◽  
Guang Xi
2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Lang Wu ◽  
Dazhi Zhang ◽  
Boying Wu ◽  
Xiong Meng

Fifth-order mapped semi-Lagrangian weighted essentially nonoscillatory (WENO) methods at certain smooth extrema are developed in this study. The schemes contain the mapped semi-Lagrangian finite volume (M-SL-FV) WENO 5 method and the mapped compact semi-Lagrangian finite difference (M-C-SL-FD) WENO 5 method. The weights in the more common scheme lose accuracy at certain smooth extrema. We introduce mapped weighting to handle the problem. In general, a cell average is applied to construct the M-SL-FV WENO 5 reconstruction, and the M-C-SL-FD WENO 5 interpolation scheme is proposed based on an interpolation approach. An accuracy test and numerical examples are used to demonstrate that the two schemes reduce the loss of accuracy and improve the ability to capture discontinuities.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Chunlei Ruan ◽  
Kunfeng Liang ◽  
Xianjie Chang ◽  
Ling Zhang

Population balance equations (PBEs) are the main governing equations to model the processes of crystallization. Two-dimensional PBEs refer to the crystals that grow anisotropically with the change of two internal coordinates. Since the PBEs are hyperbolic equations, it is necessary to build up high resolution schemes to avoid numerical diffusion and numerical dispersion in order to obtain the accurate crystal size distribution (CSD). In this work, a 5th order weighted essentially nonoscillatory (WENO) method is introduced to compute the two-dimensional PBEs. Several numerical benchmark examples from literatures are carried out; it is found that WENO method has higher resolution than HR method which is well established. Therefore, WENO method is recommended in crystallization simulation when the crystal size distributions are sharp and higher accuracy is needed.


2013 ◽  
Vol 11 (01) ◽  
pp. 1350049
Author(s):  
M. P. RAY ◽  
B. P. PURANIK ◽  
U. V. BHANDARKAR

High-resolution extensions to six Riemann solvers and three flux vector splitting schemes are developed within the framework of a reconstruction-evolution approach. Third-order spatial accuracy is achieved using two different piecewise parabolic reconstructions and a weighted essentially nonoscillatory scheme. A three-stage TVD Runge–Kutta time stepping is employed for temporal integration. The modular development of solvers provides an ease in selecting a reconstruction scheme and/or a Riemann solver/flux vector splitting scheme. The performances of these high-resolution solvers are compared for several one- and two-dimensional test cases. Based on a comprehensive assessment of the solutions obtained with all solvers, it is found that the use of the weighted essentially nonoscillatory reconstruction with the van Leer flux vector splitting scheme provides solutions for a variety of problems with acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document