Flow-Field Designs of Bipolar Plates in PEM Fuel Cells: Theory and Applications

Fuel Cells ◽  
2012 ◽  
Vol 12 (6) ◽  
pp. 989-1003 ◽  
Author(s):  
J. Wang ◽  
H. Wang
2018 ◽  
Vol 933 ◽  
pp. 342-350
Author(s):  
Yussed Awin ◽  
Nihad Dukhan

Bipolar plates in Proton Exchange Membrane fuel cells (PEMFC) distribute fuel and oxidant over the reactive sites of the membrane electrode assembly. In a stack, bipolar plates collect current, remove reaction products and manage water. They also separate neighboring cells and keep the oxidant and the fuel from mixing; they provide structural support to the stack. The plates are typically graphite with parallel or serpentine channels. The efficiency of a stack depends on the performance of the bipolar plates, which depends on the material and flow field design. The drawbacks of graphite include weight, fabrication inaccuracy, cost, porosity, and brittleness. Open-cell metal foam is investigated as a flow field/bipolar plate and compared to conventional graphite bipolar plates. The complex internal structure of the foam was modeled using an idealized unit cell based on a body center cube. This cell maintained the actual structural features of the foam. Clones of the idealized cell were virtually connected to each other to form the new bipolar plate. SolidWorks, and Auto-CAD were used to generate the unit cell and the computational domain, which was imported into ANSYS. Meshing of the domain produced than 350,000 elements, and 70,000 nodes. Appropriate boundary and operating conditions for PEMFC were applied, and the PEMFC module within ANSYS was used to obtain the temperature and flow distribution as well as the fuel cell performance. In comparison to conventional bipolar plates, results show that the cell current and voltage densities were improved, and temperature distribution on the membrane was even, and within the allowable limit. As importantly, there was a weight reduction of about 40% as a result of using metal foam as a bipolar plate.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3203 ◽  
Author(s):  
Oluwatosin Ijaodola ◽  
Emmanuel Ogungbemi ◽  
Fawwad Nisar. Khatib ◽  
Tabbi Wilberforce ◽  
Mohamad Ramadan ◽  
...  

Environmental concerns of greenhouse gases (GHG) effect from fossil commodities and the fast increase in global energy demand have created awareness on the need to replace fossil fuels with other sources of clean energy. PEM fuel cell (PEMFC) is a promising source of energy to replace fossil fuels. The commercialization of the cell depends on its price, weight and mechanical strength. Bipolar plates are among the main components of PEMFC which perform some significant functions in the fuel cell stack. Metal bipolar plate is considered by the research community as the future material for fuel cells. However, surface coating is required for metals to enhance its corrosion resistance, hydrophilicity and interfacial contact resistance (ICR) in PEM fuel cells. Open pore cellular metal foam (OPCMF) materials have been used to replace the conventional flow field channel in recent times due to its low electrical resistance, high specific area and high porosity; however, it endures the same corrosion problem as the metallic bipolar plate. This investigation offers an overview on different types of bipolar plates and techniques in coating metallic bipolar platse and open pore metal foam as flow field channel materials to improve the corrosion resistance which will eventually increase the efficiency of the fuel cell appreciably.


2005 ◽  
Vol 2 (4) ◽  
pp. 290-294 ◽  
Author(s):  
Shuo-Jen Lee ◽  
Ching-Han Huang ◽  
Yu-Pang Chen ◽  
Chen-Te Hsu

Aluminum was considered a good candidate material for bipolar plates of the polymer electrolyte membrane (PEM) fuel cells due to its low cost, light weight, high strength and good manufacturability. But there were problems of both chemical and electrochemical corrosions in the PEM fuel cell operating environment. The major goals of this research are to find proper physical vapor deposition (PVD) coating materials which would enhance surface properties by making significant improvements on corrosion resistance and electrical conductivity at a reasonable cost. Several coating materials had been studied to analyze their corrosion resistance improvement. The corrosion rates of all materials were tested in a simulated fuel cell environment. The linear polarization curve of electrochemical method measured by potentiostat instrument was employed to determine the corrosion current. Results of the corrosion tests indicated that all of the coating materials had good corrosion resistance and were stable in the simulated fuel cell environment. The conductivities of the coated layers were better and the resistances changed very little after the corrosion test. At last, single fuel cells were made by each PVD coating material. Fuel cell tests were conducted to determine their performance w.r.t. that was made of graphite. The results of fuel cell tests indicated that metallic bipolar plates with PVD coating could be used in PEM fuel cells.


2013 ◽  
Vol 231 ◽  
pp. 106-112 ◽  
Author(s):  
Jennifer R. Mawdsley ◽  
J. David Carter ◽  
Xiaoping Wang ◽  
Suhas Niyogi ◽  
Chinbay Q. Fan ◽  
...  

2016 ◽  
Vol 30 (16) ◽  
pp. 1650155 ◽  
Author(s):  
Ebrahim Afshari ◽  
Masoud Ziaei-Rad ◽  
Nabi Jahantigh

In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.


2020 ◽  
Vol 146 (5) ◽  
pp. 04020054 ◽  
Author(s):  
Quan Ding ◽  
Hong-Liang Zhao ◽  
Zhong-Min Wan ◽  
Yan-Ru Yang ◽  
Chen Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document