Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

2016 ◽  
Vol 30 (16) ◽  
pp. 1650155 ◽  
Author(s):  
Ebrahim Afshari ◽  
Masoud Ziaei-Rad ◽  
Nabi Jahantigh

In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

Author(s):  
Michael Pien ◽  
Steven Lis ◽  
Radha Jalan ◽  
Marvin Warshay ◽  
Suresh Pahwa

Higher efficiency operation of PEM fuel cells needs an advanced passive way to remove product water. Water flooding in gas flow channels reduces efficiency and needs to be mitigated by a support of balance of plant design and components which results in parasitic power losses. ElectroChem’s Integrated Flow Field (IFF) design with the integration of hydrophobic and hydrophilic matrix has been proven to solve these challenges with no impact on the performance. The hydrophobic and hydrophilic matrix facilitates two phase (gas and liquid) flow to and away from the interface between the electrode membrane assembly and the flow field. A phase-separation feature of the IFF allowed the fuel cells to operate on a flow rate at its consumption rate. The IFF fuel cell has demonstrated operation at the ideal one stoichiometric ratio with 100% gas utilization and orientation independent. The IFF also served as gas humidifier through the creation of simultaneous distribution of gas and water within the cell. The self-humidification capability keeps the cell operating without the humidity of the input gas. The IFF design also enhanced the performance of water electrolysis which is a reverse process of fuel cell. The IFF supported the passive water feed to the cell and gas separation from the cell.


Author(s):  
Wei‐Hsin Chen ◽  
Zong‐Lin Tsai ◽  
Min‐Hsing Chang ◽  
Tzu‐Hsuan Hsu ◽  
Pei‐Chi Kuo

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 471 ◽  
Author(s):  
Xuyang Zhang ◽  
Andrew Higier ◽  
Xu Zhang ◽  
Hongtan Liu

Flow field plays an important role in the performance of proton exchange membrane (PEM) fuel cells, such as transporting reactants and removing water products. Therefore, the performance of a PEM fuel cell can be improved by optimizing the flow field dimensions and designs. In this work, single serpentine flow fields with four different land widths are used in PEM fuel cells to study the effects of the land width. The gas diffusion layers are made of carbon cloth. Since different land widths may be most suitable for different reactant flow rates, three different inlet flow rates are studied for all the flow fields with four different land widths. The effects of land width and inlet flow rate on fuel cell performance are studied based on the polarization curves and power densities. Without considering the pumping power, the cell performance always increases with the decrease in the land width and the increase in the inlet flow rates. However, when taking into consideration the pumping power, the net power density reaches the maximum at different combinations of land widths and reactant flow rates at different cell potentials.


Author(s):  
Daniel J. Fenton ◽  
Jeffrey J. Gagliardo ◽  
Thomas A. Trabold

To achieve optimal performance of proton exchange membrane (PEM) fuel cells, effective water management is crucial. Cells need to be fabricated to operate over wide ranges of current density and cell temperature. To investigate these design and operational conditions, the present experiment utilized neutron radiography for measurement of in-situ water volumes of operating PEM fuel cells under varying operating conditions. Fuel cell performance was found to be generally inversely correlated to liquid water volume in the active area. High water concentrations restrict narrow flow field channels, limiting the reactant flow, and causing the development of performance-reducing liquid water blockages (slugs). The analysis was performed both quantitatively and qualitatively to compare the overall liquid water volume within the cell to the flow field geometry. The neutron image analysis results revealed interesting trends related to water volume as a function of time. At temperatures greater than 25°C, the total liquid water volume at start-up in the active area was the lowest at 1.5 A/cm2. At 25°C, 0.1 A/cm2 performed with the least amount of liquid water accumulation. However, as the reaction progressed at temperatures above 25°C, there was a crossover point where 0.1 A/cm2 accumulated less water than 1.5 A/cm2. The higher the temperature, the longer the time required to reach this crossover point. Results from the current density analysis showed a minimization of water slugs at 1.5 A/cm2, while the temperature analysis showed unexpectedly that, independent of current density, the condition with lowest water volume was always 35°C.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3203 ◽  
Author(s):  
Oluwatosin Ijaodola ◽  
Emmanuel Ogungbemi ◽  
Fawwad Nisar. Khatib ◽  
Tabbi Wilberforce ◽  
Mohamad Ramadan ◽  
...  

Environmental concerns of greenhouse gases (GHG) effect from fossil commodities and the fast increase in global energy demand have created awareness on the need to replace fossil fuels with other sources of clean energy. PEM fuel cell (PEMFC) is a promising source of energy to replace fossil fuels. The commercialization of the cell depends on its price, weight and mechanical strength. Bipolar plates are among the main components of PEMFC which perform some significant functions in the fuel cell stack. Metal bipolar plate is considered by the research community as the future material for fuel cells. However, surface coating is required for metals to enhance its corrosion resistance, hydrophilicity and interfacial contact resistance (ICR) in PEM fuel cells. Open pore cellular metal foam (OPCMF) materials have been used to replace the conventional flow field channel in recent times due to its low electrical resistance, high specific area and high porosity; however, it endures the same corrosion problem as the metallic bipolar plate. This investigation offers an overview on different types of bipolar plates and techniques in coating metallic bipolar platse and open pore metal foam as flow field channel materials to improve the corrosion resistance which will eventually increase the efficiency of the fuel cell appreciably.


2005 ◽  
Vol 2 (4) ◽  
pp. 290-294 ◽  
Author(s):  
Shuo-Jen Lee ◽  
Ching-Han Huang ◽  
Yu-Pang Chen ◽  
Chen-Te Hsu

Aluminum was considered a good candidate material for bipolar plates of the polymer electrolyte membrane (PEM) fuel cells due to its low cost, light weight, high strength and good manufacturability. But there were problems of both chemical and electrochemical corrosions in the PEM fuel cell operating environment. The major goals of this research are to find proper physical vapor deposition (PVD) coating materials which would enhance surface properties by making significant improvements on corrosion resistance and electrical conductivity at a reasonable cost. Several coating materials had been studied to analyze their corrosion resistance improvement. The corrosion rates of all materials were tested in a simulated fuel cell environment. The linear polarization curve of electrochemical method measured by potentiostat instrument was employed to determine the corrosion current. Results of the corrosion tests indicated that all of the coating materials had good corrosion resistance and were stable in the simulated fuel cell environment. The conductivities of the coated layers were better and the resistances changed very little after the corrosion test. At last, single fuel cells were made by each PVD coating material. Fuel cell tests were conducted to determine their performance w.r.t. that was made of graphite. The results of fuel cell tests indicated that metallic bipolar plates with PVD coating could be used in PEM fuel cells.


2013 ◽  
Vol 74 ◽  
pp. 115-127 ◽  
Author(s):  
Ali Reza Teymourtash ◽  
Danyal Rezaei Khonakdar ◽  
Mohammad Reza Raveshi

2020 ◽  
Vol 34 (7) ◽  
pp. 8857-8863
Author(s):  
Yongfeng Liu ◽  
Shijie Bai ◽  
Ping Wei ◽  
Pucheng Pei ◽  
Shengzhuo Yao ◽  
...  

Author(s):  
Luis Breziner ◽  
Peter Strahs ◽  
Parsaoran Hutapea

The objective of this research is to analyze the effects of vibration on the performance of hydrogen PEM fuel cells. It has been reported that if the liquid water transport across the gas diffusion layer (GDL) changes, so does the overall cell performance. Since many fuel cells operate under a vibrating environment –as in the case of automotive applications, this may influence the liquid water concentration across the GDL at different current densities, affecting the overall fuel cell performance. The problem was developed in two main steps. First, the basis for an analytical model was established using current models for water transport in porous media. Then, a series of experiments were carried, monitoring the performance of the fuel cell for different parameters of oscillation. For sinusoidal vibration at 10, 20 and 50Hz (2 g of magnitude), a decrease in the fuel cell performance by 2.2%, 1.1% and 1.3% was recorded when compared to operation at no vibration respectively. For 5 g of magnitude, the fuel cell reported a drop of 5.8% at 50 Hz, whereas at 20 Hz the performance increased by 1.3%. Although more extensive experimentation is needed to identify a relationship between magnitude and frequency of vibration affecting the performance of the fuel cell as well as a throughout examination of the liquid water formation in the cathode, this study shows that sinusoidal vibration, overall, affects the performance of PEM fuel cells.


Sign in / Sign up

Export Citation Format

Share Document