Carbon dioxide separation using α ‐alumina ceramic tube supported cellulose triacetate‐tributyl phosphate composite membrane

2019 ◽  
Vol 9 (2) ◽  
pp. 287-305 ◽  
Author(s):  
Kunalan Shankar ◽  
Palanivelu Kandasamy
2021 ◽  
Vol 13 (23) ◽  
pp. 13367
Author(s):  
Angus Shiue ◽  
Ming-Jie Yin ◽  
Min-Hsuan Tsai ◽  
Shu-Mei Chang ◽  
Graham Leggett

In this study, Polyvinyl alcohol (PVA) blended with Polyethylene glycol (PEG), Monosodium glutamate (MSG) and Glutamic acid (GA) was cast on a reverse osmosis membrane to form a composite membrane. It is expected that the ether group can increase the CO2 affinity of the membrane. Sodium tetraborate (Borax) as a crosslinker can increase membrane basicity and glutamic acid (salt) can provide an enhanced transport mechanism, thereby improving the permeability and selectivity of carbon dioxide. FTIR spectra show that the thickness of coating is sufficiently low, while SEM results show that PVA-PEG series have a dense surface, and particles are observed on the surface of MSG/GA series. The gas permeance and separation performance of the composite membrane was tested using a single gas. Results showed that CO2 had higher permeance (GPU) at lower pressure differential. PEG with an ether group had the greatest effect on improving CO2 permeance and selectivity. However, MSG and GA with amine groups could not effectively improve CO2 selectivity due to solubility. The best coating solution was provided by PVA-PEG-1.2. The CO2 selectivity of the composite membrane was 10.05 with a pressure differential of 1.00 bar in a humid environment and no obvious deterioration was observed over a 10-day period. Borax can improve selectivity, water absorption, and thermal stability while avoiding the need for high temperature and long crosslinking time of aldehydes, which makes it possible to be used in a PVA carbon dioxide separation membrane.


2021 ◽  
Vol 1142 (1) ◽  
pp. 012013
Author(s):  
Siti Nur Alwani Shafie ◽  
Vinosha Viriya ◽  
Nik Abdul Hadi Md Nordin ◽  
Muhammad Roil Bilad ◽  
Mohd Dzul Hakim Wirzal

Author(s):  
Muhammad Rizwan Dilshad ◽  
Atif Islam ◽  
Bilal Haider ◽  
Muhammad Sajid ◽  
Aamir Ijaz ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2053
Author(s):  
Dragutin Nedeljkovic

An increased demand for energy in recent decades has caused an increase in the emissions of combustion products, among which carbon-dioxide is the most harmful. As carbon-dioxide induces negative environmental effects, like global warming and the greenhouse effect, a decrease of the carbon-dioxide emission has emerged as one of the most urgent tasks in engineering. In this work, the possibility for the application of the polymer-based, dense, mixed matrix membranes for flue gas treatment was tested. The task was to test a potential decrease in the permeability and selectivity of a mixed-matrix membrane in the presence of moisture and at elevated temperature. Membranes are based on two different poly(ethylene oxide)-based polymers filled with two different zeolite powders (ITR and IWS). An additive of detergent type was added to improve the contact properties between the zeolite and polymer matrix. The measurements were performed at three different temperatures (30, 60, and 90 °C) under wet conditions, with partial pressure of the water equal to the vapor pressure of the water at the given temperature. The permeability of carbon-dioxide, hydrogen, nitrogen, and oxygen was measured, and the selectivity of the carbon-dioxide versus other gases was determined. Obtained results have shown that an increase of temperature and partial pressure of the vapor slightly increase both the selectivity and permeability of the synthesized membranes. It was also shown that the addition of the zeolite powder increases the permeability of carbon-dioxide while maintaining the selectivity, compared to hydrogen, oxygen, and nitrogen.


2013 ◽  
Vol 108 ◽  
pp. 181-188 ◽  
Author(s):  
Abdelkrim Azzouz ◽  
Nicoleta Platon ◽  
Saadia Nousir ◽  
Kamel Ghomari ◽  
Denisa Nistor ◽  
...  

Desalination ◽  
2018 ◽  
Vol 425 ◽  
pp. 175-184 ◽  
Author(s):  
Kaikai Chen ◽  
Changfa Xiao ◽  
Qinglin Huang ◽  
Hailiang Liu ◽  
Yi Tang

Sign in / Sign up

Export Citation Format

Share Document