separation performances
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 60)

H-INDEX

22
(FIVE YEARS 7)

Author(s):  
Sunghwan Park ◽  
Kie Yong Cho ◽  
Hae-Kwon Jeong

Zeolitic-imidazole framework-8 (ZIF-8) membranes have shown exceptional propylene/propane separation performances. Their commercial applications have, however, been impeded by several challenges. One such challenge is the difficulty of managing microstructural defects...


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Qian Li ◽  
Peng Song ◽  
Yuye Yang ◽  
Yan Li ◽  
Naixin Wang ◽  
...  

The pursuit of improved water purification technology has motivated extensive research on novel membrane materials to be carried out. In this paper, one-dimensional carboxylated carbon nanotubes (CNTs) were intercalated into the interlayer space of layered double hydroxide (LDH) to form a composite membrane for water purification. The CNTs/LDH laminates were deposited on the surface of the hydrolyzed polyacrylonitrile (PAN) ultrafiltration membrane through a vacuum-assisted assembly strategy. Based on the characterization of the morphology and structure of the CNTs/LDH composite membrane, it was found that the intercalation of CNT created more mass transfer channels for water molecules. Moreover, the permeance of the CNTs/LDH membrane was improved by more than 50% due to the low friction and rapid flow of water molecules in the CNT tubes. Additionally, the influence of preparation conditions on the separation performance was investigated using Evans blue (EB). Optimized fabrication conditions were given (the concentration of CoAl-LDH was 0.1 g/L and the weight ratio of CNTs was 2 wt.%). Next, the separation performances of the prepared CNTs/LDH composite membrane were evaluated using both single and mixed dye solutions. The results showed that the composite membrane obtained possessed a retention of 98% with a permeance of 2600 kg/(m2·h·MPa) for EB, which was improved by 36% compared with the pristine LDH composite membrane. Moreover, the stability of the CNTs/LDH composite membrane was investigated in 100 h with no obvious permeance drop (less than 13%), which exhibited its great potential in water purification.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Angela Dedvukaj ◽  
Peter Van den Mooter ◽  
Ivo F. J. Vankelecom

Solvent-resistant UV-cured supports consisting of a semi-interpenetrating network of polysulfone (PSf) and cross-linked poly-acrylate were successfully synthesized for the first time using an alternative, non-reprotoxic, and biodegradable solvent. Tamisolve® NxG is a high-boiling, dipolar aprotic solvent with solubility parameters similar to those of dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP), making it an eco-friendly alternative. The support membranes, prepared via UV-curing followed by non-solvent-induced phase inversion, can serve as a universal solvent-resistant support for the synthesis of a broad set of membranes, for which the selective layer can be deposited from any solvent. Parameters such as UV irradiation time and intensity, as well as the concentrations of PSf, penta-acrylate, and photo-initiator in the casting solution were varied to obtain such supports. The characteristics of the resulting supports were investigated in terms of separation performance, hydrophobicity, porosity, degree of acrylate conversion, and pure water flux. The resulting membranes showed improved chemical resistance in solvents such as ethyl acetate, NMP, tetrahydrofuran (THF), and toluene. Solvent-resistant supports with different pore sizes were synthesized and used for the preparation of thin film composite (TFC) membranes to demonstrate their potential. Promising separation performances with Rose Bengal (RB) rejections up to 98% and water permeances up to 1.5 L m−2 h−1 bar−1 were reached with these TFC-membranes carrying a polyamide top layer synthesized via interfacial polymerization.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2470
Author(s):  
Yingfu Lian ◽  
Gang Zhang ◽  
Xiaojun Wang ◽  
Jie Yang

Our current study experimentally evaluates the impacts of surface hydrophilicity of supports on the properties of polyamide (PA) thin-film composite (TFC) nanofiltration (NF) membranes. A series of “carboxylated polyethersulfone” (CPES) copolymers with an increasing “molar ratio” (MR) of carboxyl units were used to prepare supports with diverse surface hydrophilicities by the classical nonsolvent-induced phase separation (NIPS) method. Then, the PA-TFC NF membranes were finely fabricated atop these supports by conventional interfacial polymerization (IP) reactions. The linkages between the surface hydrophilicity of the supports and the characteristics of the interfacially polymerized PA layers as well as the permselectivity of NF membranes were investigated systematically. The morphological details of the NF membranes indicate that the growth of PA layers can be adjusted through increasing the surface hydrophilicity of the supports. Moreover, the separation results reveal that the NF membrane fabricated on the relatively hydrophobic support exhibits lower permeability (7.04 L·m−2·h−1·bar−1) and higher selectivity (89.94%) than those of the ones prepared on the hydrophilic supports (14.64~18.99 L·m−2·h−1·bar−1 and 66.98~73.48%). A three-stage conceptual scenario is proposed to illustrate the formation mechanism of the PA layer in NF membranes, which is due to the variation of surface hydrophilicity of the supports. The overall findings specify how the surface hydrophilicity of the supports influences the formation of PA layers, which ultimately defines the separation performances of the corresponding NF membranes.


2021 ◽  
pp. 462556
Author(s):  
Xiaojie Zhao ◽  
Shaowen Zhang ◽  
Qing Huang ◽  
Chunyun Peng ◽  
Yong Feng ◽  
...  

2021 ◽  
Vol 63 (8) ◽  
pp. 44-48
Author(s):  
Kim Minh Nguyen ◽  
◽  
Nguyen Tien Tran ◽  

Owing to their permanent porosity, diverse topology structures, and coordination factors combined with chemical tunability, the zeolitic imidazolate framework (ZIF) has shown great potential for the effective separation of hydrocarbon mixtures. In this work, the authors presented a simple microwave-assisted seeding strategy to rapidly prepare a seed layer for the synthesis of high-quality ZIF-8 membranes for propylene/propane separation. The resulted membranes grown on planar alumina support displayed excellent separation performances for a wide range of propylene/propane mixtures. The membrane displayed a propylene/propane separation factor of 70 and propylene permeance of 105×10-10 mol.m-2s-1Pa-1. Long-term stability test also showed stable gas permeance and separation performance of the ZIF-8 membranes in both atmospheric conditions and propylene/propane mixture stream.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 618
Author(s):  
Haojie Li ◽  
Shan Xu ◽  
Bingyu Zhao ◽  
Yuxiu Yu ◽  
Yaodong Liu

Blending and heat-treatment play significant roles in adjusting gas separation performances of membranes, especially for incorporating thermally labile polymers into carbon molecular sieve membranes (CMSMs). In this work, cellulose acetate (CA) is introduced into polyimide (PI) as a sacrificial phase to adjust the structure and gas separation performance from polymer to carbon. A novel result is observed that the gas permeability is reduced, even when the immiscible CA phase decomposes and forms pores after heat treatment at 350 °C. After carbonization at 600 °C, the miscible CA has changed without contribution, while the role of the immiscible CA phase has changed from original hindrance to facilitation, the composite-based CMSM at a CA content of 10 wt.% shows highest performances, a H2 permeability of ~5300 Barrer (56% enhancement) with a similar H2/N2 permselectivity of 42. The structural analyses reveal that the chain interactions and phase separation behaviors between CA and PI play critical roles on membrane structures and gas diffusion, and the corresponding phase structural evolutions during heat treatment and carbonization determine gas separation properties.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bingtao Zhao ◽  
Weifeng Qian ◽  
Huimei Li ◽  
Yaxin Su

Abstract Cyclone separators have been widely used for gas–particle separation in chemical engineering. However, their enhancement in separation performances usually increases the pressure drop, which inevitably leads to an increase in operating energy consumption. One of the challenging issues is how to reduce the cyclone pressure drop while improving separation performances. To gain insight into the pathways and impacts of cyclone pressure drop reduction, this work reviews the state-of-the-art technical principles, performances and effects, focusing on the processes, mechanisms, and characteristics of pressure drop reduction by inlet/outlet variations, additional auxiliary devices, local cyclone dimension improvement, and global optimization based on intelligent algorithms. The cyclone performances are assessed using a proposed index that combines the Euler number and the square-root particle cut-off Stokes number. It is suggested that the pressure drop and separation capability usually have a dynamic compromise. Considering the comprehensive performances, the technology using helical roof inlet, cross cone, increasing cylindrical height with h/D = 4.3 (H/D = 6.35), and globally optimized design by Sun et al. (2017) are respectively considered to the others. Particularly, the last one is recommended to be more representative in practice. Finally, the key issues to be considered in further research were also prospected.


Sign in / Sign up

Export Citation Format

Share Document