Genesis of ore-bearing volcanic rocks in the Derbur lead-zinc mining area of the Erguna Massif, western slope of the Great Xing'an Range, NE China: Geochemistry, Sr-Nd-Pb isotopes, and zircon U-Pb geochronology

2018 ◽  
Vol 54 (6) ◽  
pp. 3891-3908 ◽  
Author(s):  
Zhi-Tao Xu ◽  
Jing-Gui Sun ◽  
Xiao-Long Liang ◽  
Fan-Ting Sun ◽  
Zhu Ming ◽  
...  
2021 ◽  
pp. 1-22
Author(s):  
Jia-Hao Jing ◽  
Hao Yang ◽  
Wen-Chun Ge ◽  
Yu Dong ◽  
Zheng Ji ◽  
...  

Abstract Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.


2020 ◽  
pp. 1-15
Author(s):  
Wei Wei ◽  
Xin-Biao Lv ◽  
Xiang-Dong Wang

Abstract The Shuangjianzishan vein-type Ag-Pb-Zn deposit in the southern Great Xing’an Range (GXR), NE China, is hosted in the slate of the Lower Permian Dashizhai Formation intruded by granite porphyry. In this paper, U–Pb zircon ages and bulk-rock and isotope (Sr, Nd, Pb and Hf) compositions are reported to investigate the derivation, evolution and geodynamic setting of this granite porphyry. It is closely associated with Pb-Zn-Ag mineralization in the southern GXR and contains important geological information relating to regional tectonic evolution. Laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) zircon U–Pb dating yields an emplacement age of 131 ± 1 Ma for the granite porphyry. Bulk-rock analyses show that the Shuangjianzishan granite porphyry is characterized by high Si, Na and K contents but low Mg and Fe contents, and that the enrichment of Zr, Y and Ga suggests an A-type granite affinity. Most of the studied samples have relatively low 87Sr/86Sr values (0.70549–0.70558), with positive ϵNd(t) (0.71–0.88) and ϵHf(t) (4.9–6.9) values. The Sr–Nd isotope modelling results, in combination with the young TDM2 ages of Nd and Hf (850–864 and 668–778 Ma, respectively), reveal that the Shuangjianzishan granite porphyry may be derived from the melting of mantle-derived juvenile component, with minor lower crustal components; this finding is also supported by Pb isotopic compositions. Considering the widespread presence of granitoids with coeval volcanic rocks and regional geology data, we propose that the Shuangjianzishan granite porphyry formed in a post-orogenic extensional environment related to the upwelling of asthenospheric mantle following the closure of the Mongol–Okhotsk Ocean.


2021 ◽  
pp. jgs2020-152
Author(s):  
Fei Yang ◽  
Yinglei Li ◽  
Guang Wu ◽  
Huichuan Liu ◽  
Gongzheng Chen ◽  
...  

The Erguna Massif is located in the southwestern portion of the Great Xing'an Range and is adjacent to the Mongol–Okhotsk suture zone. It has not to be determined whether the tectonic evolutionary processes of the Erguna Massif belong to the Mongol–Okhotsk tectonic regime during the Middle Permian–Mesozoic. In this study, a suite of rocks comprising Mesozoic S-type monzogranite (LA–ICP–MS U–Pb zircon age of 248 ± 1.2 Ma), highly fractionated I-type rhyolite (204 ± 1.1 Ma), gabbro (196 ± 1.9 Ma), A2-type volcanic rocks (190 ± 0.9 Ma), A1-type trachydacite (167 ± 0.8 Ma), and Early Cretaceous A1-type alkaline rhyolite are newly identified and geochemically studied. The rhyolite, gabbro, trachydacite, and alkaline rhyolite whole-rock Sr–Nd isotope analyses got the values of initial 87Sr/86Sr ratios ranging from 0.7044 to 0.7058 and εNd(t) values of −0.68–+2.73. These samples show εHf(t) values ranging from +5.3 to +11.2 and TDM2 ranging from 0.48 Ga to 0.90 Ga. The 248 Ma monzogranites were produced by the partial melting of greywackes. The 204 Ma rhyolites were derived from the partial melting of lower mafic crust. The 196 Ma gabbros originated from the partial melting of an enriched mantle metasomatized by subduction-slab released fluids. The 190 Ma volcanic rocks, 167 Ma trachydacite, and Early Cretaceous alkaline rhyolite were mainly formed by the partial melting of the basaltic rocks. They all show enrichment in the large ion lithophile elements (e.g., Rb, Ba, and K) and depletions in the high field strength elements (e.g., Nb, Ta, and Ti), suggesting they formed in an active continental margin setting. The features of these igneous rocks indicate the southward subduction of the Mongol-Okhotsk ocean plate. Based on compiled age data, three phases of middle Mesozoic magmatism were identified in the Erguna Massif at ca. 275–225 Ma, 215–165 Ma, and 150–110 Ma. In addition, three similar magmatic phases were found in the Xing'an Massif. However, a hysteresis about ca. 15–20 Ma exists between the two massifs. These magmatic rocks may record the three stages of the southward subduction of the Mongol–Okhotsk oceanic plate, and two periods of slab rollback occurred during the Middle Permian to Early Cretaceous.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5459285


Sign in / Sign up

Export Citation Format

Share Document