Grid mapping revealed hidden geochemical lens and its chemostratigraphic bias in the middle‐upper Permian marine carbonate sequence in Laibin, South China

2021 ◽  
Author(s):  
Qing MA ◽  
Facheng YE ◽  
Wei Wang ◽  
Yidi Sheng ◽  
Ling Shu ◽  
...  
2006 ◽  
Vol 26 (6) ◽  
pp. 575-583 ◽  
Author(s):  
Wang Yue ◽  
Shen Shuzhong ◽  
Cao Changqun ◽  
Wang Wei ◽  
Charles Henderson ◽  
...  
Keyword(s):  

Facies ◽  
1998 ◽  
Vol 39 (1) ◽  
pp. 35-65 ◽  
Author(s):  
Shen Jian-wei ◽  
Toshio Kawamura ◽  
Yang Wan-rong

1989 ◽  
Vol 63 (6) ◽  
pp. 778-800 ◽  
Author(s):  
J. Keith Rigby ◽  
Fan Jiasong ◽  
Zhang Wei

Inozoans are described from patch reefs on the carbonate platform of eastern Sichuan, from the uppermost Permian Laolongdong reefs in the Changxing Formation (Kazanian–Tatarian) at Beipei, northwest of Chongqing, and from Middle and Upper Permian reefs from the Maokou (Kungurian), Wujiaping (Ufimian), and Changxing Formations at Xiangbo, Longlin County, in northwestern Guangxi. Classification of inozoans, particularly late Paleozoic ones, is still in a state of flux, but genera recognized to date can be keyed using the general nature of the spongocoel, canals, and growth form.New genera described are Intratubospongia, Grossotubenella, Cavusonella, and Radicanalospongia. The new species described are Stellispongia radiata, S. minor, Peronidella beipeiensis, P. regulara, P. parva, Intratubospongia typica, I. tenuiperforata, I. multisi-phonata, I. minima, Grossotubenella parallela, Cavusonella caverna, and Radicanalospongia normala. A Corynella that is not identifiable to species and a sphinctozoan-like inozoan(?) sp. A that has a fibrous-appearing internal skeleton but is poorly preserved are also described. Inozoans and other sponges are major frame-builders in the Permian reefs of South China and our fauna is one of the most diverse late Paleozoic assemblages described to date.


Author(s):  
Jaruwan Mayakun ◽  
Chen-Pan Liao ◽  
Shao-Lun Liu

Abstract Calcareous green alga in the genus Halimeda are important contributors to the marine carbonate budget. Dongsha Island is located in the northernmost South China Sea and is a seagrass-dominated ecosystem with intermixed Halimeda macroloba patches, making it an excellent system to better examine the extent of carbonate contribution by H. macroloba in such an ecosystem. To this end, we examined the standing stock and actual CaCO3 contribution of H. macroloba in the seagrass-dominated ecosystem (herein Dongsha Island) and compared them with those in Halimeda-dominated ecosystems. The density, growth rate, calcification rate and CaCO3 content of H. macroloba at four life stages were investigated. The mean density of H. macroloba was around 8.82 ± 1.57 thalli m−2 and the estimated standing stock was 61,740 to 72,730 thalli. Thalli produced 1 to 2 new segments day−1, giving a growth rate of 0.003 ± 0.001 g dry weight thallus−1 day−1. Calculated algal biomass and annual areal production were 0.03 g m−2 and 9.66 g m−2 year−1. In each square metre of this area, H. macroloba produced 8.82 to 17.64 new segments day−1, accumulating 0.002 ± 0.001 g CaCO3 thallus−1 day−1 or around 6.44 g CaCO3 m−2 year−1. Mean CaCO3 content was 0.32 ± 0.05 g thallus−1. As expected, the growth rate and CaCO3 production of H. macroloba in Dongsha Island were lower than in other studies from Halimeda tropical ecosystems. Overall, this work provides the baseline of carbonate production of H. macroloba in Dongsha Island and relevant systems where the ecosystem is dominated by seagrasses.


Sign in / Sign up

Export Citation Format

Share Document