scholarly journals Sensitive period for white-matter connectivity of superior temporal cortex in deaf people

2011 ◽  
Vol 33 (2) ◽  
pp. 349-359 ◽  
Author(s):  
Yanyan Li ◽  
Guosheng Ding ◽  
James R. Booth ◽  
Ruiwang Huang ◽  
Yating Lv ◽  
...  
2008 ◽  
Vol 20 (2) ◽  
pp. 268-284 ◽  
Author(s):  
Cibu Thomas ◽  
Linda Moya ◽  
Galia Avidan ◽  
Kate Humphreys ◽  
Kwan Jin Jung ◽  
...  

An age-related decline in face processing, even under conditions in which learning and memory are not implicated, has been well documented, but the mechanism underlying this perceptual alteration remains unknown. Here, we examine whether this behavioral change may be accounted for by a reduction in white matter connectivity with age. To this end, we acquired diffusion tensor imaging data from 28 individuals aged 18 to 86 years and quantified the number of fibers, voxels, and fractional anisotropy of the two major tracts that pass through the fusiform gyrus, the pre-eminent face processing region in the ventral temporal cortex. We also measured the ability of a subset of these individuals to make fine-grained discriminations between pairs of faces and between pairs of cars. There was a significant reduction in the structural integrity of the inferior fronto-occipital fasciculus (IFOF) in the right hemisphere as a function of age on all dependent measures and there were also some changes in the left hemisphere, albeit to a lesser extent. There was also a clear age-related decrement in accuracy of perceptual discrimination, especially for more challenging perceptual discriminations, and this held to a greater degree for faces than for cars. Of greatest relevance, there was a robust association between the reduction of IFOF integrity in the right hemisphere and the decline in face perception, suggesting that the alteration in structural connectivity between the right ventral temporal and frontal cortices may account for the age-related difficulties in face processing.


2020 ◽  
Author(s):  
M Babo-Rebelo ◽  
A Puce ◽  
D Bullock ◽  
L Hugueville ◽  
F Pestilli ◽  
...  

ABSTRACTOccipito-temporal regions within the face network process perceptual and socio-emotional information, but the dynamics and interactions between different nodes within this network remain unknown. Here, we analyzed intracerebral EEG from 11 epileptic patients viewing a stimulus sequence beginning with a neutral face with direct gaze. The gaze could avert or remain direct, while the emotion changed to fearful or happy. N200 field potential peak latencies indicated that face processing begins in inferior occipital cortex and proceeds anteroventrally to fusiform and inferior temporal cortices, in parallel. The superior temporal sulcus responded preferentially to gaze changes with augmented field potential amplitudes for averted versus direct gaze, and large effect sizes relative to other regions of the network. An overlap analysis of posterior white matter tractography endpoints (from 1066 healthy brains) relative to active intracerebral electrodes from the 11 patients showed likely involvement of both dorsal and ventral posterior white matter pathways. The inferior occipital and temporal sulci likely broadcast their information - the former dorsally to intraparietal sulcus, and the latter between fusiform and superior temporal cortex. Overall, our data call for inclusion of inferior temporal cortex in face processing models, and anchor the superior temporal cortex in dynamic gaze processing.


2012 ◽  
Vol 23 (8) ◽  
pp. 1988-1996 ◽  
Author(s):  
Yanyan Li ◽  
James R. Booth ◽  
Danling Peng ◽  
Yufeng Zang ◽  
Junhong Li ◽  
...  

2021 ◽  
pp. 0271678X2199098
Author(s):  
Saima Hilal ◽  
Siwei Liu ◽  
Tien Yin Wong ◽  
Henri Vrooman ◽  
Ching-Yu Cheng ◽  
...  

To determine whether white matter network disruption mediates the association between MRI markers of cerebrovascular disease (CeVD) and cognitive impairment. Participants (n = 253, aged ≥60 years) from the Epidemiology of Dementia in Singapore study underwent neuropsychological assessments and MRI. CeVD markers were defined as lacunes, white matter hyperintensities (WMH), microbleeds, cortical microinfarcts, cortical infarcts and intracranial stenosis (ICS). White matter microstructure damage was measured as fractional anisotropy and mean diffusivity by tract based spatial statistics from diffusion tensor imaging. Cognitive function was summarized as domain-specific Z-scores. Lacunar counts, WMH volume and ICS were associated with worse performance in executive function, attention, language, verbal and visual memory. These three CeVD markers were also associated with white matter microstructural damage in the projection, commissural, association, and limbic fibers. Path analyses showed that lacunar counts, higher WMH volume and ICS were associated with executive and verbal memory impairment via white matter disruption in commissural fibers whereas impairment in the attention, visual memory and language were mediated through projection fibers. Our study shows that the abnormalities in white matter connectivity may underlie the relationship between CeVD and cognition. Further longitudinal studies are needed to understand the cause-effect relationship between CeVD, white matter damage and cognition.


2007 ◽  
Vol 18 (1) ◽  
pp. 230-242 ◽  
Author(s):  
Stephen M. Wilson ◽  
Istvan Molnar-Szakacs ◽  
Marco Iacoboni

NeuroImage ◽  
1996 ◽  
Vol 3 (3) ◽  
pp. S230
Author(s):  
R.D. Lane ◽  
E.M. Reiman ◽  
G.L. Ahern ◽  
G.E. Schwartz ◽  
R.J. Davidson ◽  
...  

2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
C. Leroy ◽  
S. Chanraud ◽  
E. Artiges ◽  
C. Martelli ◽  
A. Cachia ◽  
...  

Background:Brain models of drug addiction are being tackled in humans, using PET and MRI.Results:1.Whereas tobacco and cannabis do not interact directly with dopamine sites, positron emission tomography detected lower availability in sites regulating the catecholamines homeostasis, notably in dopamine transporter sites in striatal and in extrastriatal regions. This further supports repeated and long term substance use progress towards an adaptative diminished basal dopamine level that would contribute to the switch to an addicted brain.2.Alcohol: abnormalities in brain macro- and micro- structure were searched in detoxified alcohol-dependents with preserved psychosocial functioning:-Brain function (fMRI): fronto-cerebellar overactivation detected during an auditory language task in alcohol-dependents may reflect the compensatory effort required for patients to maintain the same level of performance as controls.-Brain macrostructure (MRI). Widespread lower white matter volumes, and lower grey matter volumes in the frontal lobe, insula, hippocampus, thalami and cerebellum, were detected. Poorer neuropsychological performance correlated with smaller grey matter volumes in these regions and with lower white matter volume in the brainstem.-Brain microstructure (DTI): tractography of white matter fiber bundles revealed that brainstem bundles alteration may contribute to cognitive flexibility impairment. Regression analyses showed memory scores were related to brain microstructure in parahippocampal areas, frontal cortex, and left temporal cortex. This suggest diffusion imaging (DTI) is a useful probe to early alcohol-induced brain alterations.Conclusion:While indices of dopamine down-regulation are consistency detected in several drug addictions, even “socially-adapted” alcohol dependence may induce change in brain structure.Psychol Med. 1998 28:1039-48.Neuropsychopharmacology. 2007 32:429-38.IEEE Trans Med Imaging. 2007 26:553-65J Nucl Med. 2007 48:538-46.Neuropsychopharmacology (Chanraud S et al., 2008 Jul 9. [Epub ahead of print]).J Clin Psychopharmacol (Leroy C et al, in press).


Author(s):  
Jin Ho Jung ◽  
Yae Ji Kim ◽  
Seok Jong Chung ◽  
Han Soo Yoo ◽  
Yang Hyun Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document