MYC‐Protein Arginine Methyltransferase 5 Axis Defines the Tumorigenesis and Immune Response in Hepatocellular Carcinoma

Hepatology ◽  
2021 ◽  
Author(s):  
Yuhong Luo ◽  
Yuqing Gao ◽  
Weiwei Liu ◽  
Yuan Yang ◽  
Jie Jiang ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sara Busacca ◽  
Qi Zhang ◽  
Annabel Sharkey ◽  
Alan G. Dawson ◽  
David A. Moore ◽  
...  

AbstractWe hypothesized that small molecule transcriptional perturbation could be harnessed to target a cellular dependency involving protein arginine methyltransferase 5 (PRMT5) in the context of methylthioadenosine phosphorylase (MTAP) deletion, seen frequently in malignant pleural mesothelioma (MPM). Here we show, that MTAP deletion is negatively prognostic in MPM. In vitro, the off-patent antibiotic Quinacrine efficiently suppressed PRMT5 transcription, causing chromatin remodelling with reduced global histone H4 symmetrical demethylation. Quinacrine phenocopied PRMT5 RNA interference and small molecule PRMT5 inhibition, reducing clonogenicity in an MTAP-dependent manner. This activity required a functional PRMT5 methyltransferase as MTAP negative cells were rescued by exogenous wild type PRMT5, but not a PRMT5E444Q methyltransferase-dead mutant. We identified c-jun as an essential PRMT5 transcription factor and a probable target for Quinacrine. Our results therefore suggest that small molecule-based transcriptional perturbation of PRMT5 can leverage a mutation-selective vulnerability, that is therapeutically tractable, and has relevance to 9p21 deleted cancers including MPM.


2019 ◽  
Vol 10 (7) ◽  
pp. 1033-1038 ◽  
Author(s):  
Hong Lin ◽  
Min Wang ◽  
Yang W. Zhang ◽  
Shuilong Tong ◽  
Raul A. Leal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document