Mixed convection flow over a stretching sheet of variable thickness: Analytical and numerical solutions of self‐similar equations

Heat Transfer ◽  
2020 ◽  
Vol 49 (6) ◽  
pp. 3882-3899
Author(s):  
Muhammad Qasim ◽  
Nadia Riaz ◽  
Dianchen Lu ◽  
Muhammad Idrees Afridi
1998 ◽  
Vol 34 (2-3) ◽  
pp. 213-219 ◽  
Author(s):  
H. S. Takhar ◽  
R. S. Agarwal ◽  
R. Bhargava ◽  
S. Jain

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Khilap Singh ◽  
Manoj Kumar

A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.


Entropy ◽  
2016 ◽  
Vol 19 (1) ◽  
pp. 10 ◽  
Author(s):  
Muhammad Afridi ◽  
Muhammad Qasim ◽  
Ilyas Khan ◽  
Sharidan Shafie ◽  
Ali Alshomrani

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Syed Muhammad Imran ◽  
Saleem Asghar ◽  
Muhammad Mushtaq

This paper deals with the analysis of an unsteady mixed convection flow of a fluid saturated porous medium adjacent to heated/cooled semi-infinite stretching vertical sheet in the presence of heat source. The unsteadiness in the flow is caused by continuous stretching of the sheet and continuous increase in the surface temperature. We present the analytical and numerical solutions of the problem. The effects of emerging parameters on field quantities are examined and discussed.


Sign in / Sign up

Export Citation Format

Share Document