Heat generation/absorption on MHD flow of a micropolar fluid over a heated stretching surface in the presence of the boundary parameter

Heat Transfer ◽  
2021 ◽  
Author(s):  
Shankar Goud Bejawada ◽  
Zafar Hayat Khan ◽  
Muhammad Hamid
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Khilap Singh ◽  
Manoj Kumar

A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.


2009 ◽  
Vol 14 (1) ◽  
pp. 27-40 ◽  
Author(s):  
M.-E. M. Khedr ◽  
A. J. Chamkha ◽  
M. Bayomi

This work considers steady, laminar, MHD flow of a micropolar fluid past a stretched semi-infinite, vertical and permeable surface in the presence of temperature dependent heat generation or absorption, magnetic field and thermal radiation effects. A set of similarity parameters is employed to convert the governing partial differential equations into ordinary differential equations. The obtained self-similar equations are solved numerically by an efficient implicit, iterative, finite-difference method. The obtained results are checked against previously published work for special cases of the problem in order to access the accuarcy of the numerical method and found to be in excellent agreement. A parametric study illustrating the influence of the various physical parameters on the skin friction coefficient, microrotaion coefficient or wall couple stress as well as the wall heat transfer coefficient or Nusselt number is conducted. The obtained results are presented graphically and in tabular form and the physical aspects of the problem are discussed.


Sign in / Sign up

Export Citation Format

Share Document