Heat and mass transfer of triple diffusive convection in viscoelastic liquids under internal heat source modulations

Heat Transfer ◽  
2021 ◽  
Author(s):  
S. Noor Arshika ◽  
Sameena Tarannum ◽  
Subbarama Pranesh
Author(s):  
You-Rong Li ◽  
Dan-Ling Zeng

Based on non-equilibrium thermodynamic theory and combined with the conservation laws, a comprehensive theoretical model was established to describe heat and mass transfer during convective drying process, and numerical calculation was performed. The results show that: (a) the external convective heat and mass transfer may be treated as the conductive heat transfer with internal heat source and the molecular mass diffusion with internal mass source, respectively, and the ability of heat and mass transfer mainly depends on the strength of the heat source and mass source; the higher the temperature of the drying media, the lower the strength of the internal heat source, but the higher that of the internal mass sources; (b) the evaporation of internal water takes place inside the whole material, and the molecular mass diffusion of the internal vapor is in the direction of decreasing mass transfer potential, not along the decreasing partial pressure of vapor.


Fluids ◽  
2021 ◽  
Vol 6 (5) ◽  
pp. 182
Author(s):  
A. A. Altawallbeh

Double diffusive convection in a binary viscoelastic fluid saturated porous layer in the presence of a cross diffusion effect and an internal heat source is studied analytically using linear and nonlinear stability analysis. The linear stability theory is based on the normal mode technique, while the nonlinear theory is based on a minimal representation of truncated double Fourier series. The modified Darcy law for the viscoelastic fluid of the Oldroyd type is considered to model the momentum equation. The onset criterion for stationary and oscillatory convection and steady heat and mass transfer have been obtained analytically using linear and nonlinear theory, respectively. The combined effect of an internal heat source and cross diffusion is investigated. The effects of Dufour, Soret, internal heat, relaxation and retardation time, Lewis number and concentration Rayleigh number on stationary, oscillatory, and heat and mass transport are depicted graphically. Heat and mass transfer are presented graphically in terms of Nusselt and Sherwood numbers, respectively. It is reported that the stationary and oscillatory convection are significantly influenced with variation of Soret and Defour parameters. An increment of the internal heat parameter has a destabilizing effect as well as enhancing the heat transfer process. On the other hand, an increment of internal heat parameter has a variable effect on mass transfer. It is found that there is a critical value for the thermal Rayleigh number, below which increasing internal heat decreases the Sherwood number, while above it increasing the internal heat increases the Sherwood number.


2020 ◽  
Vol 25 (2) ◽  
pp. 254-261
Author(s):  
Naveed Ahmed ◽  
Ad nan ◽  
Umar Khan ◽  
Syed Tauseef Mohyud-Din ◽  
Ilyas Khan ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Moli Zhao ◽  
Qiangyong Zhang ◽  
Shaowei Wang

The onset of double diffusive convection is investigated in a Maxwell fluid saturated porous layer with internal heat source. The modified Darcy law for the Maxwell fluid is used to model the momentum equation of the system, and the criterion for the onset of the convection is established through the linear and nonlinear stability analyses. The linear analysis is obtained using the normal mode technique, and the nonlinear analysis of the system is studied with the help of truncated representation of Fourier series. The effects of internal Rayleigh number, stress relaxation parameter, normalized porosity, Lewis number, Vadasz number and solute Rayleigh number on the stationary, and oscillatory and weak nonlinear convection of the system are shown numerically and graphically. The effects of various parameters on transient heat and mass transfer are also discussed and presented analytically and graphically.


Author(s):  
Ajay Singh ◽  
Kanchan Shakya

In this paper, the effect of internal heat source and Soret effect has been investigated on double diffusive convection in a rotating anisotropic porous medium saturated with a couple stress fluids, heated and salted from below. Linear stability analysis has been performed by using Normal mode technique and for nonlinear analysis, minimal representation of Fourier series up to two terms has been considered. The modified Darcy model, which includes the time derivative term and Coriolis term, has been employed in the momentum equation. The effect of Taylor number, couple stress parameter, solute Rayleigh number, internal heat source parameter, Lewis number, Darcy-Prandtl number, thermal and mechanical anisotropy parameter on the stationary and oscillatory modes of convection has been obtained and shown graphically, Also the heat and mass transports are obtained in terms of the Nusselt number and Sherwood number respectively, and shown graphically.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
B. R. Rout ◽  
S. K. Parida ◽  
S. Panda

This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.


Sign in / Sign up

Export Citation Format

Share Document