Radiation and slip effects on MHD point flow of nanofluid towards a stretching sheet with melting heat transfer

Heat Transfer ◽  
2021 ◽  
Author(s):  
Navin Kumar ◽  
Ram Niwas Jat ◽  
Sharad Sinha ◽  
Praveen Kumar Dadheech ◽  
Priyanka Agrawal ◽  
...  
2016 ◽  
Vol 5 (3) ◽  
Author(s):  
M.R. Krishnamurthy ◽  
B.J. Gireesha ◽  
B.C. Prasannakumara ◽  
Rama Subba Reddy Gorla

AbstractA theoretically investigation has been performed to study the effects of thermal radiation and chemical reaction on MHD velocity slip boundary layer flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. The Brownian motion and thermophoresis effects are incorporated in the present nanofluid model. A set of proper similarity variables is used to reduce the governing equations into a system of nonlinear ordinary differential equations. An efficient numerical method like Runge-Kutta-Fehlberg-45 order is used to solve the resultant equations for velocity, temperature and volume fraction of the nanoparticle. The effects of different flow parameters on flow fields are elucidated through graphs and tables. The present results have been compared with existing one for some limiting case and found excellent validation.


2019 ◽  
Vol 24 (2) ◽  
pp. 245-258 ◽  
Author(s):  
K. Ganesh Kumar ◽  
B.J. Gireesha ◽  
N.G. Rudraswamy ◽  
M.R. Krishnamurthy

Abstract An unsteady flow and melting heat transfer of a nanofluid over a stretching sheet was numerically studied by considering the effect of chemical reaction and thermal radiation. The governing non-linear partial differential equations describing the flow problem are reduced to a system of non-linear ordinary differential equations using the similarity transformations and solved numerically using the Runge–Kutta–Fehlberg fourth–fifth order method. Numerical results for concentration, temperature and velocity profiles are shown graphically and discussed for different physical parameters. Effect of pertinent parameters on momentum, temperature and concentration profiles along with local Sherwood number, local skin-friction coefficient and local Nusselt number are well tabulated and discussed.


Sign in / Sign up

Export Citation Format

Share Document