scholarly journals Genomic variants reducing expression of two endocytic receptors in 46,XY differences of sex development

2022 ◽  
Author(s):  
Hannah L. Marko ◽  
Nadine C. Hornig ◽  
Regina C. Betz ◽  
Paul‐Martin Holterhus ◽  
Janine Altmüller ◽  
...  
2016 ◽  
Vol 86 ◽  
pp. 8-20 ◽  
Author(s):  
Nina Callens ◽  
Maaike Van Kuyk ◽  
Jet H. van Kuppenveld ◽  
Stenvert L.S. Drop ◽  
Peggy T. Cohen-Kettenis ◽  
...  

2018 ◽  
Vol 6 (5) ◽  
pp. 785-795 ◽  
Author(s):  
Patrick Sproll ◽  
Wassim Eid ◽  
Camila R. Gomes ◽  
Berenice B. Mendonca ◽  
Nathalia L. Gomes ◽  
...  

2018 ◽  
Vol 90 (4) ◽  
pp. 213-220 ◽  
Author(s):  
Alan D. Rogol ◽  
Lindsay Parks Pieper

This report illustrates the links between history, sport, endocrinology, and genetics to show the ways in which historical context is key to understanding the current conversations and controversies about who may compete in the female category in elite sport. The International Association of Athletics Federations (IAAF) introduced hyperandrogenemia regulations for women’s competitions in 2011, followed by the International Olympic Committee (IOC) for the 2012 Olympics. The policies concern female athletes who naturally produce higher-than-average levels of testosterone and want to compete in the women’s category. Hyperandrogenemia guidelines are the current effort in a long series of attempts to determine women’s eligibility scientifically. Scientific endeavors to control who may participate as a woman illustrate the impossibility of neatly classifying competitors by sex and discriminate against women with differences of sex development (also called intersex by some).


2021 ◽  
Vol 15 (12) ◽  
Author(s):  
Rodrigo L.P. Romao ◽  
Luis H. Braga ◽  
Melise Keays ◽  
Peter Metcalfe ◽  
Karen Psooy ◽  
...  

2020 ◽  
Vol 117 (24) ◽  
pp. 13680-13688 ◽  
Author(s):  
Caroline Eozenou ◽  
Nitzan Gonen ◽  
Maria Sol Touzon ◽  
Anne Jorgensen ◽  
Svetlana A. Yatsenko ◽  
...  

Sex determination in mammals is governed by antagonistic interactions of two genetic pathways, imbalance in which may lead to disorders/differences of sex development (DSD) in human. Among 46,XX individuals with testicular DSD (TDSD) or ovotesticular DSD (OTDSD), testicular tissue is present in the gonad. Although the testis-determining geneSRYis present in many cases, the etiology is unknown in mostSRY-negative patients. We performed exome sequencing on 78 individuals with 46,XX TDSD/OTDSD of unknown genetic etiology and identified seven (8.97%) with heterozygous variants affecting the fourth zinc finger (ZF4) of Wilms’ tumor 1 (WT1) (p.Ser478Thrfs*17, p.Pro481Leufs*15, p.Lys491Glu, p.Arg495Gln [x3], p.Arg495Gly). The variants were de novo in six families (P= 4.4 × 10−6), and the incidence of WT1 variants in 46,XX DSD is enriched compared to control populations (P< 1.8 × 10−4). The introduction of ZF4 mutants into a human granulosa cell line resulted in up-regulation of endogenous Sertoli cell transcripts andWt1Arg495Gly/Arg495GlyXX mice display masculinization of the fetal gonads. The phenotype could be explained by the ability of the mutated proteins to physically interact with and sequester a key pro-ovary factor β-CATENIN, which may lead to up-regulation of testis-specific pathway. Our data show that unlike previous association of WT1 and 46,XY DSD, ZF4 variants of WT1 are a relatively common cause of 46,XX TDSD/OTDSD. This expands the spectrum of phenotypes associated with WT1 variants and shows that the WT1 protein affecting ZF4 can function as a protestis factor in an XX chromosomal context.


2019 ◽  
Vol 32 (2) ◽  
pp. 209
Author(s):  
Tess I. Jewell ◽  
Rebecca J. Whelan ◽  
Greggor Mattson ◽  
Evangeline M. Heiliger ◽  
Michelle M. Ernst

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Catherine Livermore ◽  
Nick Warr ◽  
Nicolas Chalon ◽  
Pam Siggers ◽  
Joffrey Mianné ◽  
...  

AbstractAdamts16 encodes a disintegrin-like and metalloproteinase with thrombospondin motifs, 16, a member of a family of multi-domain, zinc-binding proteinases. ADAMTS-16 is implicated in a number of pathological conditions, including hypertension, cancer and osteoarthritis. A large number of observations, including a recent report of human ADAMTS16 variants in cases of 46,XY disorders/differences of sex development (DSD), also implicate this gene in human testis determination. We used CRISPR/Cas9 genome editing to generate a loss-of-function allele in the mouse in order to examine whether ADAMTS-16 functions in mouse testis determination or testicular function. Male mice lacking Adamts16 on the C57BL/6N background undergo normal testis determination in the fetal period. However, adult homozygotes have an average testis weight that is around 10% lower than age-matched controls. Cohorts of mutant males tested at 3-months and 6-months of age were fertile. We conclude that ADAMTS-16 is not required for testis determination or male fertility in mice. We discuss these phenotypic data and their significance for our understanding of ADAMTS-16 function.


Sign in / Sign up

Export Citation Format

Share Document