Does the incorporation of process conceptualization and tracer data improve the structure and performance of a simple rainfall‐runoff model in a Scottish mesoscale catchment?

2008 ◽  
Vol 22 (14) ◽  
pp. 2461-2474 ◽  
Author(s):  
D. Tetzlaff ◽  
S. Uhlenbrook ◽  
S. Eppert ◽  
C. Soulsby
Author(s):  
Domiho Japhet Kodja ◽  
Gil Mahé ◽  
Ernest Amoussou ◽  
Michel Boko ◽  
Jean-Emmanuel Paturel

The study aims to analyze the performance criteria of the GR4J model to reproduce high water flows in the Ouémé watershed at Bonou's outlet which has been vulnerable to climate change in recent decades. The methodology focused on the use of daily climatological and hydrometric data extracted from files of National Directorate of Meteorology, and General Directorate of Water; they were supplemented by those of SIEREM/HSM dataset over the period 1961-2015. The rainfall was regionalized using Thiessen method. The performance of the GR4J model was assessed with NSE, RMSE and KGE criteria. The results indicate that the study area is marked by rainfall variabilities and detection of two breakpoints (1968 and 1987) which divide the series into three sub-periods; these discontinuities have repercussions on the streamflow. It's found that GR4J model overestimates the streamflow during the low water period and underestimates them in high water. However, the efficiency and performance criteria NSE, RMSE and KGE calculated on high water flow rates are better in calibration than in validation. The KGE values are range between 83-85% in calibration and 56-68% during validation, which gives to GR4J model the efficiency and performance to reproduce high flow rates in the study area


2021 ◽  
Author(s):  
Jamie Lee Stevenson ◽  
Christian Birkel ◽  
Aaron J. Neill ◽  
Doerthe Tetzlaff ◽  
Chris Soulsby

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1226
Author(s):  
Pakorn Ditthakit ◽  
Sirimon Pinthong ◽  
Nureehan Salaeh ◽  
Fadilah Binnui ◽  
Laksanara Khwanchum ◽  
...  

Accurate monthly runoff estimation is crucial in water resources management, planning, and development, preventing and reducing water-related problems, such as flooding and droughts. This article evaluates the monthly hydrological rainfall-runoff model’s performance, the GR2M model, in Thailand’s southern basins. The GR2M model requires only two parameters: production store (X1) and groundwater exchange rate (X2). Moreover, no prior research has been reported on its application in this region. The 37 runoff stations, which are located in three sub-watersheds of Thailand’s southern region, namely; Thale Sap Songkhla, Peninsular-East Coast, and Peninsular-West Coast, were selected as study cases. The available monthly hydrological data of runoff, rainfall, air temperature from the Royal Irrigation Department (RID) and the Thai Meteorological Department (TMD) were collected and analyzed. The Thornthwaite method was utilized for the determination of evapotranspiration. The model’s performance was conducted using three statistical indices: Nash–Sutcliffe Efficiency (NSE), Correlation Coefficient (r), and Overall Index (OI). The model’s calibration results for 37 runoff stations gave the average NSE, r, and OI of 0.657, 0.825, and 0.757, respectively. Moreover, the NSE, r, and OI values for the model’s verification were 0.472, 0.750, and 0.639, respectively. Hence, the GR2M model was qualified and reliable to apply for determining monthly runoff variation in this region. The spatial distribution of production store (X1) and groundwater exchange rate (X2) values was conducted using the IDW method. It was susceptible to the X1, and X2 values of approximately more than 0.90, gave the higher model’s performance.


2012 ◽  
Vol 26 (26) ◽  
pp. 3953-3961 ◽  
Author(s):  
Jiangmei Luo ◽  
Enli Wang ◽  
Shuanghe Shen ◽  
Hongxing Zheng ◽  
Yongqiang Zhang

1982 ◽  
Vol 108 (7) ◽  
pp. 813-822
Author(s):  
Otto J. Helweg ◽  
Jaime Amorocho ◽  
Ralph H. Finch

Sign in / Sign up

Export Citation Format

Share Document