storm drainage
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 21)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 13 (19) ◽  
pp. 10562
Author(s):  
Carlos Sánchez-Mendieta ◽  
Juan Jose Galán ◽  
Isabel Martinez-Lage

The work presented includes a review of the state of art of porous concrete. Its purpose is to evaluate the potential use of porous concrete in constructions where the level of surface runoff justifies it. A review of the literature presented here has been necessary where parameters of special consideration have been defined in the dosage of permeable mixtures. The study includes the definition of porous concrete in terms of its main components: cement, coarse aggregate, water, additives, and sand, in little or no quantity, to cause the generation of an effective content of interconnected voids that allow rapid storm drainage. Given the reports of variables of high incidence in the mechanical behavior of porous concrete (resistance/permeability relationship), an investigation is warranted to synthesize the effects of the variables in the preparation of the mixture: water–cement ratio, granulometry, and morphology of the aggregates, compaction pressure, and curing techniques, among others. Likewise, the protocols for the characterization of porous concrete and additional aspects relevant to support the experimental phase are exposed, constituting a reference or anchor point for developing technologies associated with the manufacture of this material and the possibilities of its implementation in constructions.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2476
Author(s):  
Omar Seleem ◽  
Maik Heistermann ◽  
Axel Bronstert

The presence of impermeable surfaces in urban areas hinders natural drainage and directs the surface runoff to storm drainage systems with finite capacity, which makes these areas prone to pluvial flooding. The occurrence of pluvial flooding depends on the existence of minimal areas for surface runoff generation and concentration. Detailed hydrologic and hydrodynamic simulations are computationally expensive and require intensive resources. This study compared and evaluated the performance of two simplified methods to identify urban pluvial flood-prone areas, namely the fill–spill–merge (FSM) method and the topographic wetness index (TWI) method and used the TELEMAC-2D hydrodynamic numerical model for benchmarking and validation. The FSM method uses common GIS operations to identify flood-prone depressions from a high-resolution digital elevation model (DEM). The TWI method employs the maximum likelihood method (MLE) to probabilistically calibrate a TWI threshold (τ) based on the inundation maps from a 2D hydrodynamic model for a given spatial window (W) within the urban area. We found that the FSM method clearly outperforms the TWI method both conceptually and effectively in terms of model performance.


Author(s):  
Julieta M Daciuk ◽  
Valeria Schneider

The increasing rainfall issues related with current humid periods, as part of city of Resistencia’s climate in Argentina, impact and affect their population. This city has an inefficient storm drainage system, as a result of human intervention in the natural environment. Moreover, there is a wide range of vacant land that can offer and integrated green open spaces system that could relief and absorb the overflow of rainfall, while ensuring optimum solutions to face floods with less intervention, less environmental impact and low investment. The outcomes of this research have pointed out four key sectors suffering frequent flood and could be relief with green open spaces. This vacant land, are still available to be incorporated as absorbent areas that could also be design a flooding park, offering not only absorbent areas but also could be useful for leisure purposes, available for the community.


2021 ◽  
Vol 25 (4) ◽  
pp. 1727-1746
Author(s):  
Urs Schönenberger ◽  
Christian Stamm

Abstract. Surface runoff represents a major pathway for pesticide transport from agricultural areas to surface waters. The influence of artificial structures (e.g. roads, hedges, and ditches) on surface runoff connectivity has been shown in various studies. In Switzerland, so-called hydraulic shortcuts (e.g. inlet and maintenance shafts of road or field storm drainage systems) have been shown to influence surface runoff connectivity and related pesticide transport. Their occurrence and their influence on surface runoff and pesticide connectivity have, however, not been studied systematically. To address that deficit, we randomly selected 20 study areas (average size of 3.5 km2) throughout the Swiss plateau, representing arable cropping systems. We assessed shortcut occurrence in these study areas using three mapping methods, namely field mapping, drainage plans, and high-resolution aerial images. Surface runoff connectivity in the study areas was analysed using a 2×2 m digital elevation model and a multiple-flow algorithm. Parameter uncertainty affecting this analysis was addressed by a Monte Carlo simulation. With our approach, agricultural areas were divided into areas that are either directly, indirectly (i.e. via hydraulic shortcuts), or not at all connected to surface waters. Finally, the results of this connectivity analysis were scaled up to the national level, using a regression model based on topographic descriptors, and were then compared to an existing national connectivity model. Inlet shafts of the road storm drainage system were identified as the main shortcuts. On average, we found 0.84 inlet shafts and a total of 2.0 shafts per hectare of agricultural land. In the study catchments, between 43 % and 74 % of the agricultural area is connected to surface waters via hydraulic shortcuts. On the national level, this fraction is similar and lies between 47 % and 60 %. Considering our empirical observations led to shifts in estimated fractions of connected areas compared to the previous connectivity model. The differences were most pronounced in flat areas of river valleys. These numbers suggest that transport through hydraulic shortcuts is an important pesticide flow path in a landscape where many engineered structures exist to drain excess water from fields and roads. However, this transport process is currently not considered in Swiss pesticide legislation and authorization. Therefore, current regulations may fall short in addressing the full extent of the pesticide problem. However, independent measurements of water flow and pesticide transport to quantify the contribution of shortcuts and validating the model results are lacking. Overall, the findings highlight the relevance of better understanding the connectivity between fields and receiving waters and the underlying factors and physical structures in the landscape.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 826
Author(s):  
Xiaoli Hao ◽  
Jie Mu ◽  
Hongjian Shi

Storm drainage inlets transport urban runoff and discharge to underground sewer systems. If the inlet structure is blocked, the urban drainage system is hampered, leading to urban flooding. To quantitatively analyze the influence of clogging conditions on inlet discharge capacity, laboratory experiments were conducted to address the impact of different inlet clogging conditions on inlet discharge capacity under different upstream discharge conditions. These were based on a two-layer platform that mimicked a complete inlet structure including a drainage grate, a rainwater well, and a connecting pipe. The results show that the water flow near the inlet was similar to weir flow when the rainwater well was not full, whereas the water flow state near the inlet behaved similarly to orifice flow after becoming full. In addition, it was found that the clogging extent and position can significantly influence the comprehensive discharge capacity of the street inlet. The experimental dataset was used to calculate the inlet discharge coefficients of the weir and orifice flow states under different clogging conditions. The results are applicable to research addressing the formation mechanisms of urban floods. Additionally, this study is of practical significance for early warning systems and emergency response support during heavy rainfall.


Author(s):  
Xingpo Liu ◽  
Chengfei Xia ◽  
Yifan Tang ◽  
Jiayang Tu ◽  
Huimin Wang

Abstract A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis–Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of parameters and calculate their uncertainty intervals associated with the magnitude of estimated rainfall depth quantiles. Also, the efficiency of AM-H and conventional maximum likelihood estimation (MLE) in parameter estimation and uncertainty quantification are compared. And the procedure was implemented and discussed for the case of Chaohu city, China. Results of our work reveal that: (i) the adaptive Bayesian method, especially for return level associated to large return period, shows better estimated effect when compared with MLE; it should be noted that the implementation of MLE often produces overy optimistic results in the case of Chaohu city; (ii) AM-H algorithm is more reliable than MLE in terms of uncertainty quantification, and yields relatively narrow credible intervals for the quantile estimates to be instrumental in risk assessment of urban storm drainage planning.


2020 ◽  
Author(s):  
Urs Schönenberger ◽  
Christian Stamm

Abstract. Surface runoff represents a major pathway for pesticide transport from agricultural areas to surface waters. The influence of man-made structures (e.g. roads, hedges, ditches) on surface runoff connectivity has been shown in various studies. In Switzerland, so-called hydraulic shortcuts (e.g. inlets and maintenance manholes of road or field storm drainage systems) have been shown to influence surface runoff connectivity and related pesticide transport. Their occurrence, and their influence on surface runoff and pesticide connectivity have however not been studied systematically. To address that deficit, we randomly selected 20 study areas (average size = 3.5 km2) throughout the Swiss plateau, representing arable cropping systems. We assessed shortcut occurrence in these study areas using three mapping methods: field mapping, drainage plans, and high-resolution aerial images. Surface runoff connectivity in the study areas was analysed using a 2 × 2 m digital elevation model and a multiple-flow algorithm. Parameter uncertainty affecting this analysis was addressed by a Monte Carlo simulation. With our approach, agricultural areas were divided into areas that are either directly connected to surface waters, indirectly (i.e. via hydraulic shortcuts), or not connected at all. Finally, the results of this connectivity analysis were scaled up to the national level using a regression model based on topographic descriptors. Inlets of the road storm drainage system were identified as the main shortcuts. On average, we found 0.84 inlets and a total of 2.0 manholes per hectare of agricultural land. In the study catchments between 43 and 74 % of the agricultural area is connected to surface waters via hydraulic shortcuts. On the national level, this fraction is similar (54 %). These numbers suggest that transport through hydraulic shortcuts is an important pesticide flow path in a landscape where many engineered structures exist to drain excess water from fields and roads. However, this transport process is currently not considered in Swiss pesticide legislation and authorisation. Therefore, current regulations may fall short to address the full extent of the pesticide problem. Overall, the findings highlight the relevance of better understanding the connectivity between fields and receiving waters and the underlying factors and physical structures in the landscape.


Sign in / Sign up

Export Citation Format

Share Document