Natural killing and antibody-dependent cellular cytotoxicity in specific-pathogen-free miniature swine and germ-free piglets. II. Ontogenic development of NK and ADCC

1981 ◽  
Vol 28 (2) ◽  
pp. 175-178 ◽  
Author(s):  
Nam Doll Huh ◽  
Yoon Berm Kim ◽  
Hillel S. Koren ◽  
D. Bernard Amos
Author(s):  
Ayako Aoki ◽  
Reiji Aoki ◽  
Madoka Yatagai ◽  
Toshiyuki Kawasumi

ABSTRACT MicroRNAs play an important role in microbiota–host crosstalk. In this study, we compared microRNA expression in whole colons of specific pathogen-free mice and germ-free mice. Forty-eight microRNAs were differentially expressed by more than 2-fold. Gene ontology analysis of the predicted mRNA targets revealed that the majority of the most significant gene ontology terms were related to GTPases and nerves.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Shuwei Zhang ◽  
Yantao Zhao ◽  
Christina Ohland ◽  
Christian Jobin ◽  
Shengmin Sang

Abstract Objectives The in vivo mechanism of tea polyphenol-mediated prevention of many chronic diseases is still largely unknown. Studies have shown that accumulation of toxic reactive cellular metabolites, such as ammonia and reactive carbonyl species (RCS), is one of the causing factors to the development of many chronic diseases. The objective of this study is to investigated the in vivo interaction between tea polyphenols and ammonia and RCS. Methods In mice, we gave 200 mg/kg tea polyphenol ((-)-epigallocatechin-3-gallate (EGCG) or theaflavin) to CD-1 mice, 129/SvEv specific-pathogen-free (SPF) mice, or germ-free (GF) mice. Urinary and fecal samples were collected in metabolic cages for 24 h. In humans, two healthy volunteers drank 4 cups of Lipton green tea every day for four days. On the fourth day, 24 h urinary and fecal samples were collected after consuming the first cup of tea. Using LC tandem mass, we searched the formation of the aminated and RCS conjugated metabolites of tea polyphenols. Chemical standards were synthesized to confirm the structures of these metabolites. In order to study the impact of gut microbiota on the formation of these metabolites, we also quantified the concentrations of these metabolites in SPF and GF mice. Results We found that both EGCG and theaflavin could rapidly react with ammonia to generate the aminated metabolites. Both tea polyphenols and their aminated metabolites could further scavenge RCS, such as methylglyoxal (MGO), malondialdehyde (MDA), and trans-4-hydroxy-2-nonenal (4-HNE), to produce the RCS conjugates of tea polyphenols and the aminated tea polyphenols. Both the aminated and the RCS conjugated metabolites of EGCG were detected in human after drinking four cups of green tea per day. By comparing the levels of the aminated and the RCS conjugated metabolites in EGCG or theaflavin exposed germ-free (GF) mice and specific-pathogen-free (SPF) mice, we demonstrated that gut microbiota facilitate the formation of the aminated metabolites of tea polyphenols, the RCS conjugates of tea polyphenols, and the RCS conjugates of the aminated tea polyphenols. Conclusions Altogether, this study provides in vivo evidences that tea polyphenols have the capacity to scavenge toxic reactive metabolic wastes. This finding opens a new window to understand the underlying mechanisms by which drinking tea could prevent the development of chronic diseases. Funding Sources We gratefully acknowledge financial support from NIH R01 grant AT008623 to this work.


1997 ◽  
Vol 185 (4) ◽  
pp. 791-794 ◽  
Author(s):  
Masao Murakami ◽  
Kazuo Nakajima ◽  
Ken-ichi Yamazaki ◽  
Takehiko Muraguchi ◽  
Tadao Serikawa ◽  
...  

In anti-red blood cell autoantibody transgenic (autoAb Tg) mice almost all B cells are deleted except for B-1 cells in the peritoneal cavity and the gut. About one-half of the auto Ab Tg mice suffer from autoimmune hemolytic anemia (AIHA) in the conventional condition. Oral administration of lipopolysaccharides activates B-1 cells and induces autoimmune symptoms in the Tg mice, suggesting that the autoimmune disease in anti-RBC autoAb Tg mice is triggered by infections. To examine the association of bacterial infections with the generation of B-1 cells and the occurrence of the autoimmune disease, we analyzed anti-RBC autoAb Tg mice bred in germ-free and specific pathogen-free conditions. In germ-free conditions, few peritoneal B-1 cells were detected, while a significant number of peritoneal B-1 cells existed in specific pathogen-free conditions. In both conditions, no mice suffered from AIHA. However, when these Tg mice were transferred to the conventional condition or injected with lipopolysaccharide, peritoneal B-1 cells expanded and some of these mice suffered from AIHA. These results clearly showed that bacterial infections are responsible for both the expansion of B-1 cells and the onset of the autoimmune disease in these Tg mice.


2021 ◽  
Vol 15 (1) ◽  
pp. 8
Author(s):  
Rahman Ladak ◽  
Dana Philpott

With growing evidence that human disease is affected by the microbiota, many researchers have sought to modulate the microbiomes of mice to improve translational research. Altering their microbiomes, which are usually germ-free or specific pathogen-free, might allow mice to more accurately model human disease and hence produce more applicable findings. However, this has been difficult to apply to individual projects due to the disparity of explained methods and results. In this review, we first describe the immunological functions of the gut microbiota and the methods of altering mice microbiota, from transplantation route to age of transplantation to microbiota source. We then present an approach for how the gut microbiota might be considered when modelling human disease in mice. By organizing findings by type of disease - neurological, immunological, chronic inflammatory, and cancer - we propose that mouse models can be improved by considering the source of the microbiota, the presence or absence of certain microbial phyla, and by timing the transplantation during a physiologically relevant stage of development, such as the first five weeks of life.


Epigenomics ◽  
2020 ◽  
Vol 12 (16) ◽  
pp. 1377-1387
Author(s):  
Lanxiang Liu ◽  
Haiyang Wang ◽  
Ying Yu ◽  
Benhua Zeng ◽  
Xuechen Rao ◽  
...  

Aim: To comprehensively understand microbiota-regulated lincRNA–miRNA–mRNA networks in psychiatric disorders. Materials & methods: Integrated analyses of lincRNAs, mRNAs and miRNAs, obtained by microarray analysis of hippocampus from specific pathogen-free, germ-free and colonized germ-free mice, were performed. Results: Expression of 139 mRNAs, seven miRNAs and one lincRNA was restored following colonization. The restored transcripts were mainly involved in CREB and Ras/MAPK signaling pathways. RNA transcription and post-transcriptional regulation were the primary perturbed functions. Finally, 12 lincRNAs, six miRNAs and 47 mRNAs were included in a lincRNA–miRNA–mRNA network, and lincRNA0926-miR-190a-5p-Celf4 interactions may play a pivotal role in this regulatory network. Conclusion: This study provides clues for understanding the molecular basis of gut microbiota–brain interactions in depressive- and anxiety-like behaviors.


Sign in / Sign up

Export Citation Format

Share Document