Pedotransfer functions for estimating soil water retention properties of northern China agricultural soils: Development and needs*

2021 ◽  
Author(s):  
Xu Xu ◽  
Huawei Li ◽  
Chen Sun ◽  
Tiago B. Ramos ◽  
Hanaa Darouich ◽  
...  
2021 ◽  
pp. 51495
Author(s):  
Ruth M. Barajas‐Ledesma ◽  
Vanessa N. L. Wong ◽  
Karen Little ◽  
Antonio F. Patti ◽  
Gil Garnier

2014 ◽  
Vol 38 (3) ◽  
pp. 730-743 ◽  
Author(s):  
João Carlos Medeiros ◽  
Miguel Cooper ◽  
Jaqueline Dalla Rosa ◽  
Michel Grimaldi ◽  
Yves Coquet

Knowledge of the soil water retention curve (SWRC) is essential for understanding and modeling hydraulic processes in the soil. However, direct determination of the SWRC is time consuming and costly. In addition, it requires a large number of samples, due to the high spatial and temporal variability of soil hydraulic properties. An alternative is the use of models, called pedotransfer functions (PTFs), which estimate the SWRC from easy-to-measure properties. The aim of this paper was to test the accuracy of 16 point or parametric PTFs reported in the literature on different soils from the south and southeast of the State of Pará, Brazil. The PTFs tested were proposed by Pidgeon (1972), Lal (1979), Aina & Periaswamy (1985), Arruda et al. (1987), Dijkerman (1988), Vereecken et al. (1989), Batjes (1996), van den Berg et al. (1997), Tomasella et al. (2000), Hodnett & Tomasella (2002), Oliveira et al. (2002), and Barros (2010). We used a database that includes soil texture (sand, silt, and clay), bulk density, soil organic carbon, soil pH, cation exchange capacity, and the SWRC. Most of the PTFs tested did not show good performance in estimating the SWRC. The parametric PTFs, however, performed better than the point PTFs in assessing the SWRC in the tested region. Among the parametric PTFs, those proposed by Tomasella et al. (2000) achieved the best accuracy in estimating the empirical parameters of the van Genuchten (1980) model, especially when tested in the top soil layer.


2007 ◽  
Vol 6 (4) ◽  
pp. 868-878 ◽  
Author(s):  
Raghavendra B. Jana ◽  
Binayak P. Mohanty ◽  
Everett P. Springer

Author(s):  
João H. Caviglione

ABSTRACT One big challenge for soil science is to translate existing data into data that is needed. Pedotransfer functions have been proposed for this purpose and they can be point or parametric when estimating the water retention characteristics. Many indicators of soil physical quality have been proposed, including the S-Index proposed by Dexter. The objective of this study was to assess the use of pedotransfer functions for soil water retention to estimate the S-index under field conditions in the diversity of soils of the Paraná state. Soil samples were collected from 36 sites with textures ranging from sandy to heavy clay in the layers of 0-0.10 and 0.10-0.20 m and under two conditions (native forest and cultivated soil). Water content at six matric potentials, bulk density and contents of clay, sand and silt were determined. Soil-water retention curve was fitted by the van Genuchten-Mualem model and the S-index was calculated. S-index was estimated from water retention curves obtained by the pedotransfer function of Tomasella (point and parametric). Although the coefficient of determination varied from 0.759 to 0.895, modeling efficiency was negative and the regression coefficient between observed and predicted data was different from 1 in all comparisons. Under field conditions in the soil diversity of the Paraná state, restrictions were found in S-index estimation using the evaluated pedotransfer functions.


Soil Research ◽  
2014 ◽  
Vol 52 (5) ◽  
pp. 431 ◽  
Author(s):  
K. Liao ◽  
S. Xu ◽  
J. Wu ◽  
Q. Zhu

Hydrological, environmental and ecological modellers require van Genuchten soil-water retention parameters that are difficult to measure. Pedotransfer functions (PTFs) are thus routinely applied to predict hydraulic parameters (θs, ln(α) and n) from basic soil properties (e.g. bulk density, soil texture and organic matter content). This study investigated the spatial variations of van Genuchten parameters via geostatistical methods (e.g. kriging and co-kriging with remote-sensing data) and multiple-stepwise-regression-based PTFs with a limited number of samples (58) collected in Pingdu City, Shandong Province, China. The uncertainties in the spatial estimation of van Genuchten parameters were evaluated using bootstrap and Latin hypercube sampling methods. Results show that PTF-estimated parameters are less varied than observed parameters. The uncertainty in the parameter estimation is mainly due to the limited number of samples used for deriving PTFs (intrinsic uncertainty) and spatial interpolations of basic soil properties by (co)kriging (input uncertainty). When considering the intrinsic uncertainty, 36%, 29% and 47% of measurements are within the corresponding error bars (95% confidence intervals of the predictions) for the θs, ln(α) and n, respectively. When considering both intrinsic and input uncertainties, 86%, 66% and 88% of observations are within the corresponding error bars for the θs, ln(α) and n, respectively. Therefore, the input uncertainty is more important in the spatial estimation of van Genuchten parameters than the intrinsic uncertainty. Measurement of basic soil properties at high resolution and properly use of powerful spatial interpolation approach are both critical in the accurate spatial estimation of van Genuchten parameters.


2013 ◽  
Vol 50 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Christopher T.S. Beckett ◽  
Charles E. Augarde

Several models have been suggested to link a soil's pore-size distribution to its retention properties. This paper presents a method that builds on previous techniques by incorporating porosity and particles of different sizes, shapes, and separation distances to predict soil water retention properties. Mechanisms are suggested for the determination of both the main drying and wetting paths, which incorporate an adsorbed water phase and retention hysteresis. Predicted results are then compared with measured retention data to validate the model and to provide a foundation for discussing the validity and limitations of using pore-size distributions to predict retention properties.


Sign in / Sign up

Export Citation Format

Share Document