scholarly journals RING finger protein 10 attenuates vascular restenosis by inhibiting vascular smooth muscle cell hyperproliferation in vivo and vitro

IUBMB Life ◽  
2018 ◽  
Vol 71 (5) ◽  
pp. 632-642 ◽  
Author(s):  
Siyu Li ◽  
Guiquan Yu ◽  
Fuyu Jing ◽  
Hui Chen ◽  
Aoyi Liu ◽  
...  
2013 ◽  
Vol 99 (3) ◽  
pp. 525-534 ◽  
Author(s):  
Keith Allen-Redpath ◽  
Ou Ou ◽  
John H. Beattie ◽  
In-Sook Kwun ◽  
Jorg Feldmann ◽  
...  

2005 ◽  
Vol 79 (16) ◽  
pp. 10788-10795 ◽  
Author(s):  
Ryan M. Melnychuk ◽  
Patsy Smith ◽  
Craig N. Kreklywich ◽  
Franziska Ruchti ◽  
Jennifer Vomaske ◽  
...  

ABSTRACT Mouse cytomegalovirus (MCMV) encodes two potential seven-transmembrane-spanning proteins with homologies to cellular chemokine receptors, M33 and M78. While these virus-encoded chemokine receptors are necessary for the in vivo pathogenesis of MCMV, the function of these proteins is unknown. Since vascular smooth muscle cell (SMC) migration is of critical importance for the development of atherosclerosis and other vascular diseases, the ability of M33 to promote SMC motility was assessed. Similar to human CMV, MCMV induced the migration of mouse aortic SMCs but not mouse fibroblasts. To demonstrate whether M33 was required for MCMV-induced SMC migration, we employed interfering-RNA technology to specifically knock down M33 expression in the context of viral infection. The knockdown of M33 resulted in the specific reduction of M33 protein expression and ablation of MCMV-mediated SMC migration but failed to reduce viral growth in cultured cells. Adenovirus vector expression of M33 was sufficient to promote SMC migration, which was enhanced in the presence of recombinant mouse RANTES (mRANTES). In addition, M33 promoted the activation of Rac1 and extracellular signal-related kinase 1/2 upon stimulation with mRANTES. These findings demonstrate that mRANTES is a ligand for this chemokine receptor and that the activation of M33 occurs in a ligand-dependent manner. Thus, M33 is a functional homologue of US28 that is required for MCMV-induced vascular SMC migration.


2012 ◽  
Vol 96 (2) ◽  
pp. 320-329 ◽  
Author(s):  
R.-R. Cui ◽  
S.-J. Li ◽  
L.-J. Liu ◽  
L. Yi ◽  
Q.-H. Liang ◽  
...  

2010 ◽  
Vol 298 (6) ◽  
pp. C1481-C1488 ◽  
Author(s):  
Xiaojun Liu ◽  
Yunhui Cheng ◽  
Jian Yang ◽  
Thomas J. Krall ◽  
Yuqing Huo ◽  
...  

It is well established that vascular smooth muscle cell (VSMC) apoptosis and proliferation are critical cellular events in a variety of human vascular diseases. However, the molecular mechanisms involved in controlling VSMC apoptosis and proliferation are still unclear. In the current study, we have found that programmed cell death 4 (PDCD4) is significantly downregulated in balloon-injured rat carotid arteries in vivo and in platelet-derived growth factor-stimulated VSMCs in vitro. Overexpression of PDCD4 via adenovirus (Ad-PDCD4) increases VSMC apoptosis in an apoptotic model induced by serum deprivation. In contrast, VSMC apoptosis is significantly decreased by knockdown of PDCD4 via its small interfering RNA. In the rat carotid arteries in vivo, VSMC apoptosis is increased by Ad-PDCD4. We have further identified that activator protein 1 is a downstream signaling molecule of PDCD4 that is associated with PDCD4-mediated effects on VSMC apoptosis. In addition, VSMC proliferation was inhibited by overexpression of PDCD4. The current study has identified, for the first time, that PDCD4 is an essential regulator of VSMC apoptosis and proliferation. The downregulation of PDCD4 expression in diseased vascular walls may be responsible for the imbalance of VSMC proliferation and apoptosis. The results indicate that PDCD4 may be a new therapeutic target in proliferative vascular diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yi Yan ◽  
Ting Li ◽  
Zhonghao Li ◽  
Mingyuan He ◽  
Dejiang Wang ◽  
...  

Backgrounds: Our previous work revealed that AMP-activated protein kinase (AMPK) activation inhibits vascular smooth muscle cell migration in vitro by phosphorylating PDZ and LIM domain 5 (Pdlim5). As metformin is an AMPK activator, we used a mouse vascular smooth muscle cell (VSMC) line and a Myh11-cre-EGFP mice to investigate whether metformin could inhibit the migration of VSMCs in vitro and in a wire-injury model in vivo. It is recognized that VSMCs contribute to the major composition of atherosclerotic plaques. In order to investigate whether the AMPK–Pdlim5 pathway is involved in the protective function of metformin against atherosclerosis, we utilized ApoE−/− male mice to investigate whether metformin could suppress diabetes-accelerated atherosclerosis by inhibition of VSMC migration via the AMPK–Pdlim5 pathway.Methods: The mouse VSMC cell line was exogenously transfected wild type, phosphomimetic, or unphosphorylatable Pdlim5 mutant before metformin exposure. Myh11-cre-EGFP mice were treated with saline solution or metformin after these were subjected to wire injury in the carotid artery to study whether metformin could inhibit the migration of medial VSMCs into the neo-intima. In order to investigate whether the AMPK–Pdlim5 pathway is involved in the protective function of metformin against atherosclerosis, ApoE−/− male mice were divided randomly into control, streptozocin (STZ), and high-fat diet (HFD)-induced diabetes mellitus; STZ+HFD together with metformin or Pdlim5 mutant carried the adenovirus treatment groups.Results: It was found that metformin could induce the phosphorylation of Pdlim5 and inhibit cell migration as a result. The exogenous expression of phosphomimetic S177D-Pdlim5 inhibits lamellipodia formation and migration in VSMCs. It was also demonstrated that VSMCs contribute to the major composition of injury-induced neointimal lesions, while metformin could alleviate the occlusion of the carotid artery. The data of ApoE−/− mice showed that increased plasma lipids and aggravated vascular smooth muscle cell infiltration into the atherosclerotic lesion in diabetic mice were observed Metformin alleviated diabetes-induced metabolic disorders and atherosclerosis and also reduced VSMC infiltration in atherosclerotic plaques, while the Pdlim5 phospho-abolished mutant that carried adenovirus S177A-Pdlim5 undermines the protective function of metformin.Conclusions: The activation of the AMPK–Pdlim5 pathway by metformin could interrupt the migratory machine of VSMCs and inhibit cell migration in vitro and in vivo. The maintenance of AMPK activity by metformin is beneficial for suppressing diabetes-accelerated atherosclerosis.


2003 ◽  
Vol 93 (11) ◽  
pp. 1059-1065 ◽  
Author(s):  
Eugenio Stabile ◽  
Yi Fu Zhou ◽  
Motoyasu Saji ◽  
Marco Castagna ◽  
Matie Shou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document