neointima formation
Recently Published Documents


TOTAL DOCUMENTS

952
(FIVE YEARS 102)

H-INDEX

69
(FIVE YEARS 5)

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Lei Li ◽  
Yan Gao ◽  
Zhenchuan Liu ◽  
Chenglai Dong ◽  
Wenli Wang ◽  
...  

Abstract Background Neointimal hyperplasia induced by interventional surgery can lead to progressive obliteration of the vascular lumen, which has become a major factor affecting prognosis. The rate of re-endothelialization is known to be inversely related to neointima formation. Growth differentiation factor 11 (GDF11) is a secreted protein with anti-inflammatory, antioxidant, and antiaging properties. Recent reports have indicated that GDF11 can improve vascular remodeling by maintaining the differentiated phenotypes of vascular smooth muscle cells. However, it is not known whether and how GDF11 promotes re-endothelialization in vascular injury. The present study was performed to clarify the influence of GDF11 on re-endothelialization after vascular injury. Methods An adult Sprague–Dawley rat model of common carotid artery balloon dilatation injury was surgically established. A recombinant adenovirus carrying GDF11 was delivered into the common carotid artery to overexpress GDF11. Vascular re-endothelialization and neointima formation were assessed in harvested carotid arteries through histomolecular analysis. CCK-8 analysis, LDH release and Western blotting were performed to investigate the effects of GDF11 on endothelial NLRP3 inflammasome activation and relevant signaling pathways in vitro. Results GDF11 significantly enhanced re-endothelialization and reduced neointima formation in rats with balloon-dilatation injury by suppressing the activation of the NLRP3 inflammasome. Administration of an endoplasmic reticulum stress (ER stress) inhibitor, 4PBA, attenuated endothelial NLRP3 inflammasome activation induced by lysophosphatidylcholine. In addition, upregulation of LOX-1 expression involved elevated ER stress and could result in endothelial NLRP3 inflammasome activation. Moreover, GDF11 significantly inhibited NLRP3 inflammasome-mediated endothelial cell pyroptosis by negatively regulating LOX-1-dependent ER stress. Conclusions We conclude that GDF11 improves re-endothelialization and can attenuate vascular remodeling by reducing endothelial NLRP3 inflammasome activation. These findings shed light on new treatment strategies to promote re-endothelialization based on GDF11 as a future target.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kalyanaraman Vaidyanathan ◽  
Chuangqi Wang ◽  
Amanda Krajnik ◽  
Yudong Yu ◽  
Moses Choi ◽  
...  

AbstractMachine learning approaches have shown great promise in biology and medicine discovering hidden information to further understand complex biological and pathological processes. In this study, we developed a deep learning-based machine learning algorithm to meaningfully process image data and facilitate studies in vascular biology and pathology. Vascular injury and atherosclerosis are characterized by neointima formation caused by the aberrant accumulation and proliferation of vascular smooth muscle cells (VSMCs) within the vessel wall. Understanding how to control VSMC behaviors would promote the development of therapeutic targets to treat vascular diseases. However, the response to drug treatments among VSMCs with the same diseased vascular condition is often heterogeneous. Here, to identify the heterogeneous responses of drug treatments, we created an in vitro experimental model system using VSMC spheroids and developed a machine learning-based computational method called HETEROID (heterogeneous spheroid). First, we established a VSMC spheroid model that mimics neointima-like formation and the structure of arteries. Then, to identify the morphological subpopulations of drug-treated VSMC spheroids, we used a machine learning framework that combines deep learning-based spheroid segmentation and morphological clustering analysis. Our machine learning approach successfully showed that FAK, Rac, Rho, and Cdc42 inhibitors differentially affect spheroid morphology, suggesting that multiple drug responses of VSMC spheroid formation exist. Overall, our HETEROID pipeline enables detailed quantitative drug characterization of morphological changes in neointima formation, that occurs in vivo, by single-spheroid analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rebekah Tritz ◽  
Farlyn Z. Hudson ◽  
Valerie Harris ◽  
Pushpankur Ghoshal ◽  
Bhupesh Singla ◽  
...  

AbstractMutations in the NF1 tumor suppressor gene are linked to arteriopathy. Nf1 heterozygosity (Nf1+/–) results in robust neointima formation, similar to humans, and myeloid-restricted Nf1+/– recapitulates this phenotype via MEK-ERK activation. Here we define the contribution of myeloid subpopulations to NF1 arteriopathy. Neutrophils from WT and Nf1+/– mice were functionally assessed in the presence of MEK and farnesylation inhibitors in vitro and neutrophil recruitment to lipopolysaccharide was assessed in WT and Nf1+/– mice. Littermate 12–15 week-old male wildtype and Nf1+/– mice were subjected to carotid artery ligation and provided either a neutrophil depleting antibody (1A8), liposomal clodronate to deplete monocytes/macrophages, or PD0325901 and neointima size was assessed 28 days after injury. Bone marrow transplant experiments assessed monocyte/macrophage mobilization during neointima formation. Nf1+/– neutrophils exhibit enhanced proliferation, migration, and adhesion via p21Ras activation of MEK in vitro and in vivo. Neutrophil depletion suppresses circulating Ly6Clow monocytes and enhances neointima size, while monocyte/macrophage depletion and deletion of CCR2 in bone marrow cells abolish neointima formation in Nf1+/– mice. Taken together, these findings suggest that neurofibromin-MEK-ERK activation in circulating neutrophils and monocytes during arterial remodeling is nuanced and points to important cross-talk between these populations in the pathogenesis of NF1 arteriopathy.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Marta Martín-Bórnez ◽  
Javier Ávila-Medina ◽  
Eva Calderón-Sánchez ◽  
Juan Antonio Rosado ◽  
Antonio Ordoñez-Fernández ◽  
...  

Orai1 and STIM1, molecular components of store-operated calcium entry (SOCE), have been associated with vascular smooth muscle cell (VSMC) proliferation in vascular remodeling. Nevertheless, the role of SARAF (SOCE-associated regulatory factor), a regulatory protein involved in STIM1 inhibition, in vascular remodeling has not been examined. The aim of this study is to examine the role of SARAF and Orai1 in VSMC proliferation and neointima formation after balloon injury of rat carotid arteries. Experiments were conducted in an animal model of rat carotid angioplasty to characterize neointima formation. VSMC isolated from rat coronary arteries was also used to examine cell proliferation. The formation of neointima after balloon injury of rat carotid arteries was confirmed by hematoxylin and eosin staining of tissue sections up to 3 wk after surgery. Injured arteries showed significantly higher expression of SARAF, STIM1, and Orai1 compared with control tissues, corroborating the presence of these regulatory proteins in the neointima layer. Proximity ligation and coimmunoprecipitation assays revealed that SARAF interacts with Orai1 in the neointima. Furthermore, selective silencing of SARAF and Orai1 by small interfering RNA (siRNA) inhibited IGF-1–induced VSMC proliferation. Our data suggest that SARAF interacts with Orai1 to modulate SOCE and VSMC proliferation after vascular injury.


2021 ◽  
Vol 8 ◽  
Author(s):  
Baohui Yuan ◽  
He Liu ◽  
Xiaoliang Dong ◽  
Xiaohua Pan ◽  
Xun Sun ◽  
...  

Neointima formation is a serious complication caused by mechanical trauma to the vessel. (R)-4,6-dimethoxy-3-(4-methoxy phenyl)-2,3-dihydro-1H-indanone [(R)-TML 104] is a synthesized analog of the natural product resveratrol sesquiterpenes (±)-isopaucifloral F. The present study aimed to investigate the effects and underlying mechanisms of (R)-TML104 on neointima formation. Our results showed that (R)-TML104 prevented neointima formation based on a carotid artery injury model in mice. Furthermore, (R)-TML104 inhibited platelet-derived growth factor-BB (PDGF-BB)-induced vascular smooth muscle cells (VSMC) phenotypic transformation, evidenced by increased α-smooth muscle actin, reduced VSMC proliferation, and migration. Simultaneously, (R)-TML104 upregulated sirtuin-1 (SIRT1) expression in VSMC. We further uncovered that SIRT1 expression is critical for the inhibitory effects of (R)-TML104 on PDGF-BB-induced VSMC phenotypic transformation in vitro and injury-induced neointima formation in vivo. Finally, (R)-TML104-upregulated SIRT1 inhibited PDGF-BB-induced VSMC phenotypic transformation by downregulating nicotinamide adenine dinucleotide phosphate oxidase 4 expression via decreasing nuclear factor-κB acetylation. Taken together, these results revealed that (R)-TML104 upregulates SIRT1 expression and ameliorates neointima formation. Therefore, the application of (R)-TML104 may constitute an effective strategy to ameliorate neointima formation.


2021 ◽  
Vol 297 (5) ◽  
pp. 101258
Author(s):  
Xiaohong Xia ◽  
Xiaolin Liu ◽  
Renjie Chai ◽  
Qiong Xu ◽  
Zhenyu Luo ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Adem Aksoy ◽  
Muntadher Al Zaidi ◽  
Elena Repges ◽  
Marc Ulrich Becher ◽  
Cornelius Müller ◽  
...  

Background: Vitamin K antagonists (VKA) are known to promote adverse cardiovascular remodeling. Contrarily, vitamin K supplementation has been discussed to decelerate cardiovascular disease. The recently described VKOR-isoenzyme Vitamin K epoxide reductase complex subunit 1-like 1 (VKORC1L1) is involved in vitamin K maintenance and exerts antioxidant properties. In this study, we sought to investigate the role of VKORC1L1 in neointima formation and on vascular smooth muscle cell (VSMC) function.Methods and Results: Treatment of wild-type mice with Warfarin, a well-known VKA, increased maladaptive neointima formation after carotid artery injury. This was accompanied by reduced vascular mRNA expression of VKORC1L1. In vitro, Warfarin was found to reduce VKORC1L1 mRNA expression in VSMC. VKORC1L1-downregulation by siRNA promoted viability, migration and formation of reactive oxygen species. VKORC1L1 knockdown further increased expression of key markers of vascular inflammation (NFκB, IL-6). Additionally, downregulation of the endoplasmic reticulum (ER) membrane resident VKORC1L1 increased expression of the main ER Stress moderator, glucose-regulated protein 78 kDa (GRP78). Moreover, treatment with the ER Stress inducer tunicamycin promoted VKORC1L1, but not VKORC1 expression. Finally, we sought to investigate, if treatment with vitamin K can exert protective properties on VSMC. Thus, we examined effects of menaquinone-7 (MK7) on VSMC phenotype switch. MK7 treatment dose-dependently alleviated PDGF-induced proliferation and migration. In addition, we detected a reduction in expression of inflammatory and ER Stress markers.Conclusion: VKA treatment promotes neointima formation after carotid wire injury. In addition, VKA treatment reduces aortal VKORC1L1 mRNA expression. VKORC1L1 inhibition contributes to an adverse VSMC phenotype, while MK7 restores VSMC function. Thus, MK7 supplementation might be a feasible therapeutic option to modulate vitamin K- and VKORC1L1-mediated vasculoprotection.


Author(s):  
Xiaohan Mei ◽  
Xiao-Bing Cui ◽  
Yiran Li ◽  
Shi-You Chen

Objective: Vascular smooth muscle cell (SMC) proliferation contributes to neointima formation following vascular injury. Circular RNA—a novel type of noncoding RNA with closed-loop structure—exhibits cell- and tissue-specific expression patterns. However, the role of circular RNA in SMC proliferation and neointima formation is largely unknown. The objective of this study is to investigate the role and mechanism of circSOD2 in SMC proliferation and neointima formation. Approach and Results: Circular RNA profiling of human aortic SMCs revealed that PDGF (platelet-derived growth factor)-BB up- and downregulated numerous circular RNAs. Among them, circSOD2, derived from back-splicing event of SOD2 (superoxide dismutase 2), was significantly enriched. Knockdown of circSOD2 by short hairpin RNA blocked PDGF-BB–induced SMC proliferation. Inversely, circSOD2 ectopic expression promoted SMC proliferation. Mechanistically, circSOD2 acted as a sponge for miR-206, leading to upregulation of NOTCH3 and NOTCH3 signaling, which regulates cyclin D1 and CDK (cyclin-dependent kinase) 4/6. In vivo studies showed that circSOD2 was induced in neointima SMCs in balloon-injured rat carotid arteries. Importantly, knockdown of circSOD2 attenuated injury-induced neointima formation along with decreased neointimal SMC proliferation. Conclusions: CircSOD2 is a novel regulator mediating SMC proliferation and neointima formation following vascular injury. Therefore, circSOD2 could be a potential therapeutic target for inhibiting the development of proliferative vascular diseases.


2021 ◽  
Author(s):  
Redouane Aherrahrou ◽  
Tobias Reinberger ◽  
Julia Werner ◽  
Miriam Otto ◽  
Jaafar Al-Hasani ◽  
...  

AbstractThe ZC3HC1 gene is associated with various cardiovascular traits in that its common missense variant, rs11556924-T (p.Arg363His), lowers risk of coronary artery disease (CAD) and blood pressure, but increases carotid intima-media thickness (IMT). This study was designed to determine the mechanisms by which ZC3HC1 modulates IMT using in vitro and in vivo models.We assessed the effect of the rs11556924-T allele on ZC3HC1 expression in vascular smooth muscle cells (SMCs) from 151 multi-ethnic heart transplant donors and found that rs11556924-T was significantly associated with lower ZC3HC1 expression and faster SMC migration. These results were supported by in vitro silencing experiments. At the protein level, ZC3HC1 deficiency resulted in the accumulation of cyclin B1, a key cell cycle protein. Further, transcriptome analysis revealed changes in the regulation of canonical SMC marker genes, including ACTA2, CNN1, LMOD1, and TAGLN. Pathway analysis of differentially expressed genes in SMCs secondary to ZC3HC1 knockdown showed decreased expression of genes in the cell division and cytoskeleton organization pathways.In line, primary SMCs isolated from the aortas of Zc3hc1-/- mice migrated faster and proliferated more compared to SMCs isolated from wild-type littermates, with the former also showing accumulation of cyclin B1. Neointima formation was also enhanced in Zc3hc1-/- mice in response to arterial injury mimicking restenosis.Taken together, these findings demonstrate that genetic modulation or deficiency of ZC3HC1 leads to the accumulation of cyclin B1 in SMCs and increased migration, proliferation, and injury-induced neointima formation. We further discuss and propose that a genetic variant regulating SMC proliferation may enhance IMT and early atherosclerosis progression but may be beneficial for plaque stability in advanced lesions.


Sign in / Sign up

Export Citation Format

Share Document