scholarly journals Structure, expression and regulation of a nuclear gene encoding a mitochondrial protein: the yeast L(+)-lactate cytochrome c oxidoreductase (cytochrome b2).

1985 ◽  
Vol 4 (12) ◽  
pp. 3265-3272 ◽  
Author(s):  
B. Guiard
Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 573-585
Author(s):  
Vilius Stribinskis ◽  
Guo-Jian Gao ◽  
Steven R Ellis ◽  
Nancy C Martin

Abstract RPM2 is a Saccharomyces cerevisiae nuclear gene that encodes the protein subunit of mitochondrial RNase P and has an unknown function essential for fermentative growth. Cells lacking mitochondrial RNase P cannot respire and accumulate lesions in their mitochondrial DNA. The effects of a new RPM2 allele, rpm2-100, reveal a novel function of RPM2 in mitochondrial biogenesis. Cells with rpm2-100 as their only source of Rpm2p have correctly processed mitochondrial tRNAs but are still respiratory deficient. Mitochondrial mRNA and rRNA levels are reduced in rpm2-100 cells compared to wild type. The general reduction in mRNA is not reflected in a similar reduction in mitochondrial protein synthesis. Incorporation of labeled precursors into mitochondrially encoded Atp6, Atp8, Atp9, and Cytb protein was enhanced in the mutant relative to wild type, while incorporation into Cox1p, Cox2p, Cox3p, and Var1p was reduced. Pulse-chase analysis of mitochondrial translation revealed decreased rates of translation of COX1, COX2, and COX3 mRNAs. This decrease leads to low steady-state levels of Cox1p, Cox2p, and Cox3p, loss of visible spectra of aa3 cytochromes, and low cytochrome c oxidase activity in mutant mitochondria. Thus, RPM2 has a previously unrecognized role in mitochondrial biogenesis, in addition to its role as a subunit of mitochondrial RNase P. Moreover, there is a synthetic lethal interaction between the disruption of this novel respiratory function and the loss of wild-type mtDNA. This synthetic interaction explains why a complete deletion of RPM2 is lethal.


1989 ◽  
Vol 9 (10) ◽  
pp. 4161-4169
Author(s):  
S A Mayer ◽  
C L Dieckmann

CBP1 is a yeast nuclear gene encoding a mitochondrial protein that stabilizes the 5' end of cytochrome b (cob) pre-mRNA. Cytochrome b is the only mitochondrially synthesized component of the respiratory chain complex III. Since the nuclearly encoded subunits of this complex are regulated at the transcriptional level by catabolite repression, we hypothesized that CBP1 might be similarly regulated. To test the idea that transcriptional regulation of CBP1 could coordinate an increase in cytochrome b mRNA stability with an increase in nuclearly encoded complex III subunit production, we characterized the change in abundance of CBP1 mRNA during derepression on a nonfermentable carbon source. Poly(A)+ RNA from derepressed yeast cells was examined by Northern (RNA) analyses with cRNA probes from CBP1. Both 2.2- and 1.3-kilobase (kb) transcripts were detected. The 1.3-kb mRNA lacked approximately 900 nucleotides of the 3' end of the 2.2-kb mRNA, which encodes the carboxyl-terminal 250 amino acid residues of the CBP1 coding sequence. Northern analyses of RNA isolated from deletion-insertion mutants of CBP1 and from strains that overexpress CBP1 mRNA demonstrated that both mRNAs were transcribed from the CBP1 gene. Furthermore, we demonstrated that the levels of the two CBP1 mRNAs were reciprocally regulated by the carbon source in the growth medium. This is the first description of a yeast gene from which two transcripts that can encode proteins with distinctly different coding properties are generated by alternative 3'-end formation.


Gene ◽  
1995 ◽  
Vol 162 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Aleksandra Dmochowska ◽  
Agata Konopińska ◽  
Magdalena Krzymowska ◽  
Barbara Szcześniak ◽  
Magdalena Boguta

1989 ◽  
Vol 9 (10) ◽  
pp. 4161-4169 ◽  
Author(s):  
S A Mayer ◽  
C L Dieckmann

CBP1 is a yeast nuclear gene encoding a mitochondrial protein that stabilizes the 5' end of cytochrome b (cob) pre-mRNA. Cytochrome b is the only mitochondrially synthesized component of the respiratory chain complex III. Since the nuclearly encoded subunits of this complex are regulated at the transcriptional level by catabolite repression, we hypothesized that CBP1 might be similarly regulated. To test the idea that transcriptional regulation of CBP1 could coordinate an increase in cytochrome b mRNA stability with an increase in nuclearly encoded complex III subunit production, we characterized the change in abundance of CBP1 mRNA during derepression on a nonfermentable carbon source. Poly(A)+ RNA from derepressed yeast cells was examined by Northern (RNA) analyses with cRNA probes from CBP1. Both 2.2- and 1.3-kilobase (kb) transcripts were detected. The 1.3-kb mRNA lacked approximately 900 nucleotides of the 3' end of the 2.2-kb mRNA, which encodes the carboxyl-terminal 250 amino acid residues of the CBP1 coding sequence. Northern analyses of RNA isolated from deletion-insertion mutants of CBP1 and from strains that overexpress CBP1 mRNA demonstrated that both mRNAs were transcribed from the CBP1 gene. Furthermore, we demonstrated that the levels of the two CBP1 mRNAs were reciprocally regulated by the carbon source in the growth medium. This is the first description of a yeast gene from which two transcripts that can encode proteins with distinctly different coding properties are generated by alternative 3'-end formation.


Sign in / Sign up

Export Citation Format

Share Document