scholarly journals Conserved sequence elements in the 5′ region of the Ultrabithorax transcription unit

1987 ◽  
Vol 6 (5) ◽  
pp. 1393-1401 ◽  
Author(s):  
C. Deborah Wilde ◽  
Michael Akam
Gene ◽  
1989 ◽  
Vol 84 (1) ◽  
pp. 197-200 ◽  
Author(s):  
Kevin R. Dickson ◽  
Douglas C. Braaten ◽  
David Schlessinger

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ami Shah ◽  
Madison Ratkowski ◽  
Alessandro Rosa ◽  
Paul Feinstein ◽  
Thomas Bozza

AbstractOlfactory sensory neurons express a large family of odorant receptors (ORs) and a small family of trace amine-associated receptors (TAARs). While both families are subject to so-called singular expression (expression of one allele of one gene), the mechanisms underlying TAAR gene choice remain obscure. Here, we report the identification of two conserved sequence elements in the mouse TAAR cluster (T-elements) that are required for TAAR gene expression. We observed that cell-type-specific expression of a TAAR-derived transgene required either T-element. Moreover, deleting either element reduced or abolished expression of a subset of TAAR genes, while deleting both elements abolished olfactory expression of all TAARs in cis with the mutation. The T-elements exhibit several features of known OR enhancers but also contain highly conserved, unique sequence motifs. Our data demonstrate that TAAR gene expression requires two cooperative cis-acting enhancers and suggest that ORs and TAARs share similar mechanisms of singular expression.


1987 ◽  
Vol 7 (5) ◽  
pp. 1751-1758
Author(s):  
P W Stevens ◽  
J B Dodgson ◽  
J D Engel

Although the genomes of many species contain multiple copies of ferritin heavy (H)- and light (L)-chain sequences, the chicken genome contains only a single copy of the H-subunit gene. The primary transcription unit of this gene is 4.6 kilobase pairs and contains four exons which are posttranscriptionally spliced to generate a mature transcript of 869 nucleotides. Chicken and human ferritin H-subunit genomic loci are organized with similar exon-intron boundaries. They exhibit approximately 85% nucleotide identity in coding regions, which yield proteins 93% identical in amino acid sequence. We have identified a sequence of 22 highly conserved nucleotides in the 5' untranslated sequences of chicken, human, and tadpole ferritin H-subunit genes and propose that this conserved sequence may regulate iron-modulated translation of ferritin H-subunit mRNAs.


1991 ◽  
Vol 11 (3) ◽  
pp. 1668-1675
Author(s):  
V W Pollard ◽  
S L Hajduk

The mitochondrial DNA of trypanosomes is composed of maxicircle and minicircle DNAs catenated into a network, called the kinetoplast. Maxicircles encode proteins and RNAs necessary for mitochondrial assembly. Minicircles encode small transcripts which are believed to serve as guide RNAs in the process of RNA editing of maxicircle transcripts. Trypanosoma equiperdum minicircles contain three transcription units which produce three distinct transcripts. The genes for these transcripts are flanked by imperfect 18-bp repeats separated by approximately 110 bp. The transcripts have a 5' triphosphate, indicating that they are primary transcripts. Minicircle transcription initiates at a purine within a conserved sequence, 5'-AYAYA-3', where Y is a pyrimidine, 32 bp from the upstream inverted repeat, suggesting that the repeats may function in transcript initiation. Transcripts from a single minicircle transcription unit range in size from 55 to 70 nucleotides. This size heterogeneity within a single sequence class is due to the variable length of nontemplated uridine residues composing a 3' tail. The size range and heterogeneous polyuridylate 3' end of the minicircle transcripts appear to be conserved features and may be related to transcript function.


2020 ◽  
Vol 10 (9) ◽  
pp. 3015-3024 ◽  
Author(s):  
Thomas Brody ◽  
Amarendra Yavatkar ◽  
Alexander Kuzin ◽  
Ward F Odenwald

Abstract This study has taken advantage of the availability of the assembled genomic sequence of flies, mosquitos, ants and bees to explore the presence of ultraconserved sequence elements in these phylogenetic groups. We compared non-coding sequences found within and flanking Drosophila developmental genes to homologous sequences in Ceratitis capitata and Musca domestica. Many of the conserved sequence blocks (CSBs) that constitute Drosophila cis-regulatory DNA, recognized by EvoPrinter alignment protocols, are also conserved in Ceratitis and Musca. Also conserved is the position but not necessarily the orientation of many of these ultraconserved CSBs (uCSBs) with respect to flanking genes. Using the mosquito EvoPrint algorithm, we have also identified uCSBs shared among distantly related mosquito species. Side by side comparison of bee and ant EvoPrints of selected developmental genes identify uCSBs shared between these two Hymenoptera, as well as less conserved CSBs in either one or the other taxon but not in both. Analysis of uCSBs in these dipterans and Hymenoptera will lead to a greater understanding of their evolutionary origin and function of their conserved non-coding sequences and aid in discovery of core elements of enhancers. This study applies the phylogenetic footprinting program EvoPrinter to detection of ultraconserved non-coding sequence elements in Diptera, including flies and mosquitos, and Hymenoptera, including ants and bees. EvoPrinter outputs an interspecies comparison as a single sequence in terms of the input reference sequence. Ultraconserved sequences flanking known developmental genes were detected in Ceratitis and Musca when compared with Drosophila species, in Aedes and Culex when compared with Anopheles, and between ants and bees. Our methods are useful in detecting and understanding the core evolutionarily hardened sequences required for gene regulation.


2008 ◽  
Vol 28 (10) ◽  
pp. 3089-3100 ◽  
Author(s):  
Wayne A. Decatur ◽  
Murray N. Schnare

ABSTRACT The selection of sites for pseudouridylation in eukaryotic cytoplasmic rRNA occurs by the base pairing of the rRNA with specific guide sequences within the RNA components of box H/ACA small nucleolar ribonucleoproteins (snoRNPs). Forty-four of the 46 pseudouridines (Ψs) in the cytoplasmic rRNA of Saccharomyces cerevisiae have been assigned to guide snoRNAs. Here, we examine the mechanism of Ψ formation in 5S and 5.8S rRNA in which the unassigned Ψs occur. We show that while the formation of the Ψ in 5.8S rRNA is associated with snoRNP activity, the pseudouridylation of 5S rRNA is not. The position of the Ψ in 5.8S rRNA is guided by snoRNA snR43 by using conserved sequence elements that also function to guide pseudouridylation elsewhere in the large-subunit rRNA; an internal stem-loop that is not part of typical yeast snoRNAs also is conserved in snR43. The multisubstrate synthase Pus7 catalyzes the formation of the Ψ in 5S rRNA at a site that conforms to the 7-nucleotide consensus sequence present in other substrates of Pus7. The different mechanisms involved in 5S and 5.8S rRNA pseudouridylation, as well as the multiple specificities of the individual trans factors concerned, suggest possible roles in linking ribosome production to other processes, such as splicing and tRNA synthesis.


2009 ◽  
Vol 126 (6) ◽  
pp. 833-841 ◽  
Author(s):  
Jordan T. Gladman ◽  
Dawn S. Chandler

2000 ◽  
Vol 74 (20) ◽  
pp. 9776-9785 ◽  
Author(s):  
Jyothi George ◽  
Ramaswamy Raju

ABSTRACT The 3′ nontranslated region of the genomes of Sindbis virus (SIN) and other alphaviruses carries several repeat sequence elements (RSEs) as well as a 19-nucleotide (nt) conserved sequence element (3′CSE). The 3′CSE and the adjoining poly(A) tail of the SIN genome are thought to act as viral promoters for negative-sense RNA synthesis and genome replication. Eight different SIN isolates that carry altered 3′CSEs were studied in detail to evaluate the role of the 3′CSE in genome replication. The salient findings of this study as it applies to SIN infection of BHK cells are as follows: i) the classical 19-nt 3′CSE of the SIN genome is not essential for genome replication, long-term stability, or packaging; ii) compensatory amino acid or nucleotide changes within the SIN genomes are not required to counteract base changes in the 3′ terminal motifs of the SIN genome; iii) the 5′ 1-kb regions of all SIN genomes, regardless of the differences in 3′ terminal motifs, do not undergo any base changes even after 18 passages; iv) although extensive addition of AU-rich motifs occurs in the SIN genomes carrying defective 3′CSE, these are not essential for genome viability or function; and v) the newly added AU-rich motifs are composed predominantly of RSEs. These findings are consistent with the idea that the 3′ terminal AU-rich motifs of the SIN genomes do not bind directly to the viral polymerase and that cellular proteins with broad AU-rich binding specificity may mediate this interaction. In addition to the classical 3′CSE, other RNA motifs located elsewhere in the SIN genome must play a major role in template selection by the SIN RNA polymerase.


Sign in / Sign up

Export Citation Format

Share Document