transcript initiation
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 3)

H-INDEX

18
(FIVE YEARS 1)

Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1170
Author(s):  
Aida Maric ◽  
Paloma Mas

Circadian rhythms pervade nearly all aspects of plant growth, physiology, and development. Generation of the rhythms relies on an endogenous timing system or circadian clock that generates 24-h oscillations in multiple rhythmic outputs. At its bases, the plant circadian function relies on dynamic interactive networks of clock components that regulate each other to generate rhythms at specific phases during the day and night. From the initial discovery more than 13 years ago of a parallelism between the oscillations in chromatin status and the transcriptional rhythms of an Arabidopsis clock gene, a number of studies have later expanded considerably our view on the circadian epigenome and transcriptome landscapes. Here, we describe the most recent identification of chromatin-related factors that are able to directly interact with Arabidopsis clock proteins to shape the transcriptional waveforms of circadian gene expression and clock outputs. We discuss how changes in chromatin marks associate with transcript initiation, elongation, and the rhythms of nascent RNAs, and speculate on future interesting research directions in the field.


2020 ◽  
Vol 477 (15) ◽  
pp. 2807-2820
Author(s):  
Patcharawarin Ruanto ◽  
David L. Chismon ◽  
Joanne Hothersall ◽  
Rita E. Godfrey ◽  
David J. Lee ◽  
...  

The Escherichia coli NarX/NarL two-component response-regulator system regulates gene expression in response to nitrate ions and the NarL protein is a global transcription factor, which activates transcript initiation at many target promoters. One such target, the E. coli ogt promoter, which controls the expression of an O6-alkylguanine-DNA-alkyltransferase, is dependent on NarL binding to two DNA targets centred at positions −44.5 and −77.5 upstream from the transcript start. Here, we describe ogt promoter derivatives that can be activated solely by NarL binding either at position −44.5 or position −77.5. We show that NarL can also activate the ogt promoter when located at position −67.5. We present data to argue that NarL-dependent activation of transcript initiation at the ogt promoter results from a direct interaction between NarL and a determinant in the C-terminal domain of the RNA polymerase α subunit. Footprinting experiments show that, at the −44.5 promoter, NarL and the C-terminal domain of the RNA polymerase α subunit bind to opposite faces of promoter DNA, suggesting an unusual mechanism of transcription activation. Our work suggests new organisations for activator-dependent transcription at promoters and future applications for biotechnology.


2020 ◽  
Vol 48 (4) ◽  
pp. 2144-2155 ◽  
Author(s):  
Yeonoh Shin ◽  
Mark Hedglin ◽  
Katsuhiko S Murakami

Abstract Reiterative transcription is a non-canonical form of RNA synthesis by RNA polymerase in which a ribonucleotide specified by a single base in the DNA template is repetitively added to the nascent RNA transcript. We previously determined the X-ray crystal structure of the bacterial RNA polymerase engaged in reiterative transcription from the pyrG promoter, which contains eight poly-G RNA bases synthesized using three C bases in the DNA as a template and extends RNA without displacement of the promoter recognition σ factor from the core enzyme. In this study, we determined a series of transcript initiation complex structures from the pyrG promoter using soak–trigger–freeze X-ray crystallography. We also performed biochemical assays to monitor template DNA translocation during RNA synthesis from the pyrG promoter and in vitro transcription assays to determine the length of poly-G RNA from the pyrG promoter variants. Our study revealed how RNA slips on template DNA and how RNA polymerase and template DNA determine length of reiterative RNA product. Lastly, we determined a structure of a transcript initiation complex at the pyrBI promoter and proposed an alternative mechanism of RNA slippage and extension requiring the σ dissociation from the core enzyme.


2018 ◽  
Vol 69 (5) ◽  
pp. 828-839.e5 ◽  
Author(s):  
Vadim Molodtsov ◽  
Elena Sineva ◽  
Lu Zhang ◽  
Xuhui Huang ◽  
Michael Cashel ◽  
...  

2017 ◽  
Author(s):  
Vadim Molodtsov ◽  
Elena Sineva ◽  
Lu Zhang ◽  
Xuhui Huang ◽  
Michael Cashel ◽  
...  

SUMMARYDksA and ppGpp are the central players in the Escherichia coli stringent response and mediate a complete reprogramming of the transcriptome from one optimized for rapid growth to one adapted for survival during nutrient limitation. A major component of the response is a reduction in ribosome synthesis, which is accomplished by the synergistic action of DksA and ppGpp bound to RNA polymerase (RNAP) inhibiting transcription of rRNAs. Here, we report the X-ray crystal structures of E. coli RNAP holoenzyme in complex with DksA alone and with ppGpp. The structures show that DksA accesses the template strand at the active site and the downstream DNA binding site of RNAP simultaneously and reveal that binding of the allosteric effector ppGpp reshapes the RNAP–DksA complex. The structural data support a model for transcriptional inhibition in which ppGpp potentiates the destabilization of open complexes on rRNA promoters by DksA. We also determined the structure of RNAP–TraR complex, which reveals the mechanism of ppGpp-independent transcription inhibition by TraR. This work establishes new ground for understanding the pleiotropic effects of DksA and ppGpp on transcriptional regulation in proteobacteria.HighlightsDksA has two modes of binding to RNA polymeraseDksA is capable of inhibiting the catalysis and influences the DNA binding of RNAPppGpp acts as an allosteric effector of DksA functionppGpp stabilizes DksA in a more functionally important binding mode


2016 ◽  
Vol 371 (1707) ◽  
pp. 20160080 ◽  
Author(s):  
Bandar Sendy ◽  
David J. Lee ◽  
Stephen J. W. Busby ◽  
Jack A. Bryant

Chromatin immunoprecipitation, followed by quantification of immunoprecipitated DNA, can be used to measure RNA polymerase binding to any DNA segment in Escherichia coli . By calibrating measurements against the signal from a single RNA polymerase bound at a single promoter, we can calculate both promoter occupancy levels and the flux of transcribing RNA polymerase through transcription units. Here, we have applied the methodology to the E. coli lactose operon promoter. We confirm that promoter occupancy is limited by recruitment and that the supply of RNA polymerase to the lactose operon promoter depends on its location in the E. coli chromosome. Measurements of RNA polymerase binding to DNA segments within the lactose operon show that flux of RNA polymerase through the operon is low, with, on average, over 18 s elapsing between the passage of transcribing polymerases. Similar low levels of flux were found when semi-synthetic promoters were used to drive transcript initiation, even when the promoter elements were changed to ensure full occupancy of the promoter by RNA polymerase. This article is part of the themed issue ‘The new bacteriology’.


Sign in / Sign up

Export Citation Format

Share Document