The X protein of the hepatitis B virus acts as a transcription factor when targeted to its responsive element.

1990 ◽  
Vol 9 (6) ◽  
pp. 1889-1895 ◽  
Author(s):  
T. Unger ◽  
Y. Shaul
1997 ◽  
Vol 272 (11) ◽  
pp. 7132-7139 ◽  
Author(s):  
Yong Lin ◽  
Takahiro Nomura ◽  
JaeHun Cheong ◽  
Dorjbal Dorjsuren ◽  
Katsuhira Iida ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1181
Author(s):  
Chunyan Zhang ◽  
Huan Yang ◽  
Liwei Pan ◽  
Guangfu Zhao ◽  
Ruofei Zhang ◽  
...  

Hepatitis B virus (HBV) infection is a major etiological risk for the incidence of hepatocellular carcinoma (HCC), and HBV X protein (HBx) is essential for oncogenic transformation. It is not known that if HBx can sabotage the lysosomal system for transformation and tumorigenesis, or its mechanism if it does have an effect. Examining clinical data, we observed that the downregulation of lysosomal components and transcription factor EB (TFEB) was associated with a poor prognosis of HCC patients. In HCC cells, we found that expression of HBx suppressed TFEB, impaired biogenesis of autophagic-lysosome, and promoted cellular dissemination. HBx mediated downregulation of TFEB led to impairment of autophagic/lysosomal biogenesis and flux, and consequently, accumulation of integrin beta 1 (ITGB1) for motility of HCC cells. Conversely, TFEB, in a steady-state condition, through induction of lysosomal biogenesis restrained ITGB1 levels and limited mobility of HCC cells. Specifically, overexpression of TFEB upregulated and activated the cysteine proteases including cathepsin L (CTSL) to degrade ITGB1. Conversely, expression of cystatin A (CSTA) or cystatin B (CSTB), the cellular inhibitors of lysosomal cysteine proteinases, spared ITGB1 from degradation and promoted dissemination of HCC cells. Taken together, this study suggests a potential mechanism for HBV-mediated malignancy, showing that HBx mediated downregulation of TFEB leads to accumulation of ITGB1 for HCC cell migration.


Sign in / Sign up

Export Citation Format

Share Document