scholarly journals Amino acid substitutions within the matrix protein of type D retroviruses affect assembly, transport and membrane association of a capsid.

1991 ◽  
Vol 10 (3) ◽  
pp. 535-546 ◽  
Author(s):  
S. S. Rhee ◽  
E. Hunter
Virology ◽  
2009 ◽  
Vol 384 (1) ◽  
pp. 28-32 ◽  
Author(s):  
Shufang Fan ◽  
Guohua Deng ◽  
Jiasheng Song ◽  
Guobin Tian ◽  
Yongbing Suo ◽  
...  

2009 ◽  
Vol 83 (19) ◽  
pp. 9875-9889 ◽  
Author(s):  
Elodie Beaumont ◽  
Daniela Vendrame ◽  
Bernard Verrier ◽  
Emmanuelle Roch ◽  
François Biron ◽  
...  

ABSTRACT Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), typically encode envelope glycoproteins (Env) with long cytoplasmic tails (CTs). The strong conservation of CT length in primary isolates of HIV-1 suggests that this factor plays a key role in viral replication and persistence in infected patients. However, we report here the emergence and dominance of a primary HIV-1 variant carrying a natural 20-amino-acid truncation of the CT in vivo. We demonstrated that this truncation was deleterious for viral replication in cell culture. We then identified a compensatory amino acid substitution in the matrix protein that reversed the negative effects of CT truncation. The loss or rescue of infectivity depended on the level of Env incorporation into virus particles. Interestingly, we found that a virus mutant with defective Env incorporation was able to spread by cell-to-cell transfer. The effects on viral infectivity of compensation between the CT and the matrix protein have been suggested by in vitro studies based on T-cell laboratory-adapted virus mutants, but we provide here the first demonstration of the natural occurrence of similar mechanisms in an infected patient. Our findings provide insight into the potential of HIV-1 to evolve in vivo and its ability to overcome major structural alterations.


2000 ◽  
Vol 74 (17) ◽  
pp. 8085-8093 ◽  
Author(s):  
Mariana Marin ◽  
Chetankumar S. Tailor ◽  
Ali Nouri ◽  
David Kabat

ABSTRACT The baboon endogenous retrovirus (BaEV) belongs to a large, widely dispersed interference group that includes the RD114 feline endogenous virus and primate type D retroviruses. Recently, we and another laboratory independently cloned a human receptor for these viruses and identified it as the human sodium-dependent neutral amino acid transporter type 2 (hASCT2). Interestingly, mouse and rat cells are efficiently infected by BaEV but only become susceptible to RD114 and type D retroviruses if the cells are pretreated with tunicamycin, an inhibitor of protein N-linked glycosylation. To investigate this host range difference, we cloned and analyzed NIH Swiss mouse ASCT2 (mASCT2). Surprisingly, mASCT2 did not mediate BaEV infection, which implied that mouse cells might have an alternative receptor for this virus. In addition, elimination of the two N-linked oligosaccharides from mASCT2 by mutagenesis, as substantiated by proteinN-glycosidase F digestions and Western immunoblotting, did not enable it to function as a receptor for RD114 or type D retroviruses. Based on these results, we found that the related ASCT1 transporters of humans and mice are efficient receptors for BaEV but are relatively inactive for RD114 and type D retroviruses. Furthermore, elimination of the two N-linked oligosaccharides from extracellular loop 2 of mASCT1 by mutagenesis enabled it to function as an efficient receptor for RD114 and type D retroviruses. Thus, we infer that the tunicamycin-dependent infection of mouse cells by RD114 and type D retroviruses is caused by deglycosylation of mASCT1, which unmasks previously buried sites for viral interactions. In contrast, BaEV efficiently employs the glycosylated forms of mASCT1 that occur normally in untreated mouse cells.


Author(s):  
Martí Cortey ◽  
Yanli Li ◽  
Ivan Díaz ◽  
Hepzibar Clilverd ◽  
Laila Darwich ◽  
...  

AbstractThe Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic offers a unique opportunity to study the introduction and evolution of a pathogen into a completely naïve human population. We identified and analysed the amino acid mutations that gained prominence worldwide in the early months of the pandemic. Eight mutations have been identified along the viral genome, mostly located in conserved segments of the structural proteins and showing low variability among coronavirus, which indicated that they might have a functional impact. At the moment of writing this paper, these mutations present a varied success in the SARS-CoV-2 virus population; ranging from a change in the spike protein that becomes absolutely prevalent, two mutations in the nucleocapsid protein showing frequencies around 25%, to a mutation in the matrix protein that nearly fades out after reaching a frequency of 20%.


2015 ◽  
Vol 89 (12) ◽  
pp. 6515-6520 ◽  
Author(s):  
Benjamin R. Trible ◽  
Luca N. Popescu ◽  
Nicholas Monday ◽  
Jay G. Calvert ◽  
Raymond R. R. Rowland

Assessment of virus neutralization (VN) activity in 176 pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV) identified one pig with broadly neutralizing activity. A Tyr-10 deletion in the matrix protein provided escape from broad neutralization without affecting homologous neutralizing activity. The role of the Tyr-10 deletion was confirmed through an infectious clone with a Tyr-10 deletion. The results demonstrate differences in the properties and specificities of VN responses elicited during PRRSV infection.


Sign in / Sign up

Export Citation Format

Share Document