scholarly journals Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae.

1992 ◽  
Vol 11 (10) ◽  
pp. 3787-3796 ◽  
Author(s):  
S. Zhang ◽  
C. Lockshin ◽  
A. Herbert ◽  
E. Winter ◽  
A. Rich
2016 ◽  
Vol 84 (10) ◽  
pp. 3063-3070 ◽  
Author(s):  
Kelly J. Pittman ◽  
Patrick W. Cervantes ◽  
Laura J. Knoll

Intrinsic toToxoplasma gondiiinfection is the parasite-induced modulation of the host immune response, which ensures establishment of a chronic lifelong infection. This manipulation of the host immune response allowsT. gondiito not only dampen the ability of the host to eliminate the parasite but also trigger parasite differentiation to the slow-growing, encysted bradyzoite form. We previously used RNA sequencing (RNA-seq) to profile the transcriptomes of mice andT. gondiiduring acute and chronic stages of infection. One of the most abundant host transcripts during acute and chronic infection was Z-DNA binding protein 1 (ZBP1). In this study, we determined that ZBP1 functions to controlT. gondiigrowth. In activated macrophages isolated from ZBP1 deletion (ZBP1−/−) mice,T. gondiihas an increased rate of replication and a decreased rate of degradation. We also identified a novel function for ZBP1 as a regulator of nitric oxide (NO) production in activated macrophages, even in the absence ofT. gondiiinfection. Upon stimulation,T. gondii-infected ZBP1−/−macrophages display increased proinflammatory cytokines compared to wild-type macrophages under the same conditions. Thesein vitrophenotypes were recapitulatedin vivo, with ZBP1−/−mice having increased susceptibility to oral challenge, higher cyst burdens during chronic infection, and elevated inflammatory cytokine responses. Taken together, these results highlight a role for ZBP1 in assisting host control ofT. gondiiinfection.


2018 ◽  
Vol 37 (9) ◽  
pp. 485-497
Author(s):  
Vorasit Vongsutilers ◽  
Kulwadee Sawaspaiboontawee ◽  
Bodin Tuesuwan ◽  
Yoko Shinohara ◽  
Gota Kawai

2019 ◽  
Vol 10 ◽  
Author(s):  
Hussin A. Rothan ◽  
Komal Arora ◽  
Janhavi P. Natekar ◽  
Philip G. Strate ◽  
Margo A. Brinton ◽  
...  

1995 ◽  
Vol 15 (11) ◽  
pp. 5929-5936 ◽  
Author(s):  
S W Jeong ◽  
W H Lang ◽  
R H Reeder

The Saccharomyces cerevisiae polymerase I (polI) transcription terminator utilizes a DNA-binding protein (Reb1p) as part of a signal that causes the polymerase to pause prior to release from the template. To study the release element of the terminator, independent of the Reb1p pause signal, we have replaced the Reb1p binding site with the binding site for the lac repressor, which acts as a self-contained heterologous pause signal for polI. Release efficiency is maximal when the lac repressor causes polI to pause in exactly the same position that Reb1p would have caused it to pause, suggesting that polI must be precisely positioned for transcript release to occur. Mutational analysis shows that the release element is a region rich in T residues which codes for the extreme 3' end of the transcript and which has no apparent ability to form hairpins when transcribed into RNA. We discuss possible mechanisms whereby this polI release element might function.


Sign in / Sign up

Export Citation Format

Share Document