dna conformations
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 7)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Juan Pedro M Camacho ◽  
Josefa Cabrero ◽  
Maria Dolores Lopez-Leon ◽  
Maria Martin-Pecina ◽  
Francisco Perfectti ◽  
...  

Background: The full catalogue of satellite DNA (satDNA) within a same genome constitutes the satellitome. The Library Hypothesis predicts that satDNA in relative species reflects that in their common ancestor, but the evolutionary mechanisms and pathways of satDNA evolution have never been analyzed for full satellitomes. We compare here the satellitomes of two Oedipodine grasshoppers (Locusta migratoria and Oedaleus decorus) which shared their most recent common ancestor about 22.8 Ma ago. Results: We found that about one-third of their satDNA families (near 60 in every species) showed sequence homology, and were grouped into 12 orthologous superfamilies. The turnover rate of consensus sequences was extremely variable among the 20 orthologous family pairs analyzed in both species. The satDNAs shared by both species showed poor association with sequence signatures and motives frequently argued as functional, except for short inverted repeats allowing short dyad symmetries and non-B DNA conformations. Orthologous satDNAs frequently showed different FISH pattern at both intra- and interspecific levels. We defined indices of homogenization and degeneration, and quantified the level of incomplete library sorting between species. Conclusions: Our analyses revealed that satDNA degenerates through point mutation and rejuvenates through partial turnovers caused by massive tandem duplications (the so-called satDNA amplification). Remarkably, satDNA amplification increases homogenization, at intragenomic level, and diversification between species, thus constituting the basis for concerted evolution. We suggest a model of satDNA evolution by means of recursive cycles of amplification, degeneration, and rejuvenation, leading to mostly contingent evolutionary pathways where concerted evolution emerges promptly after lineages split.


2020 ◽  
Vol 7 (6) ◽  
pp. 200222 ◽  
Author(s):  
Alan Herbert

ALUs contribute to genetic diversity by altering DNA's linear sequence through retrotransposition, recombination and repair. ALUs also have the potential to form alternative non-B-DNA conformations such as Z-DNA, triplexes and quadruplexes that alter the read-out of information from the genome. I suggest here these structures enable the rapid reprogramming of cellular pathways to offset DNA damage and regulate inflammation. The experimental data supporting this form of genetic encoding is presented. ALU sequence motifs that form non-B-DNA conformations under physiological conditions are called flipons. Flipons are binary switches. They are dissipative structures that trade energy for information. By efficiently targeting cellular machines to active genes, flipons expand the repertoire of RNAs compiled from a gene. Their action greatly increases the informational capacity of linearly encoded genomes. Flipons are programmable by epigenetic modification, synchronizing cellular events by altering both chromatin state and nucleosome phasing. Different classes of flipon exist. Z-flipons are based on Z-DNA and modify the transcripts compiled from a gene. T-flipons are based on triplexes and localize non-coding RNAs that direct the assembly of cellular machines. G-flipons are based on G-quadruplexes and sense DNA damage, then trigger the appropriate protective responses. Flipon conformation is dynamic, changing with context. When frozen in one state, flipons often cause disease. The propagation of flipons throughout the genome by ALU elements represents a novel evolutionary innovation that allows for rapid change. Each ALU insertion creates variability by extracting a different set of information from the neighbourhood in which it lands. By elaborating on already successful adaptations, the newly compiled transcripts work with the old to enhance survival. Systems that optimize flipon settings through learning can adapt faster than with other forms of evolution. They avoid the risk of relying on random and irreversible codon rewrites.


2020 ◽  
Author(s):  
Dillon T. Flood ◽  
Kyle W. Knouse ◽  
Julien C. Vantourout ◽  
Brittany Sanchez ◽  
Emily J. Sturgell ◽  
...  

The controlled, site-specific ligation of molecules to native DNA remains an unanswered challenge. Herein, we report a simple solution to achieve this ligation through the tactical combination of two recently developed technologies: One for the manipulation of DNA in organic media, and another for the chemoselective labeling of alcohols. Reversible Adsorption of Solid Support (RASS) is employed to immobilize DNA and facilitate its transfer into dry acetonitrile. Subsequent ligation with P(V)-based Ψ reagents takes place in high yield with exquisite selectivity for the exposed 3’ or 5’ alcohols on DNA. This two-stage process, dubbed SENDR for Synthetic Elaboration of Native DNA by RASS, can be applied to a multitude of DNA conformations and sequences with a variety of functionalized Ψ reagents to generate useful constructs. Such entities can address numerous longstanding challenges, including the selective single coupling of DNA to proteins, ASOs, and functional small molecules, and also can allow the synthesis of doubly-labeled congeners for novel probe constructs including ones of potential interest to COVID-19 research. Finally, a prototype for the industrialization of SENDR in a kit format is presented.


Author(s):  
Dillon T. Flood ◽  
Kyle W. Knouse ◽  
Julien C. Vantourout ◽  
Brittany Sanchez ◽  
Emily J. Sturgell ◽  
...  

The controlled, site-specific ligation of molecules to native DNA remains an unanswered challenge. Herein, we report a simple solution to achieve this ligation through the tactical combination of two recently developed technologies: One for the manipulation of DNA in organic media, and another for the chemoselective labeling of alcohols. Reversible Adsorption of Solid Support (RASS) is employed to immobilize DNA and facilitate its transfer into dry acetonitrile. Subsequent ligation with P(V)-based Ψ reagents takes place in high yield with exquisite selectivity for the exposed 3’ or 5’ alcohols on DNA. This two-stage process, dubbed SENDR for Synthetic Elaboration of Native DNA by RASS, can be applied to a multitude of DNA conformations and sequences with a variety of functionalized Ψ reagents to generate useful constructs. Such entities can address numerous longstanding challenges, including the selective single coupling of DNA to proteins, ASOs, and functional small molecules, and also can allow the synthesis of doubly-labeled congeners for novel probe constructs including ones of potential interest to COVID-19 research. Finally, a prototype for the industrialization of SENDR in a kit format is presented.


Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 472 ◽  
Author(s):  
Alessio Terenzi ◽  
Hugo Gattuso ◽  
Angelo Spinello ◽  
Bernhard K. Keppler ◽  
Christophe Chipot ◽  
...  

The DNA-binding of the natural benzophenanthridine alkaloid chelerythrine (CHE) has been assessed by combining molecular modeling and optical absorption spectroscopy. Specifically, both double-helical (B-DNA) and G-quadruplex sequences—representative of different topologies and possessing biological relevance, such as telomeric or regulatory sequences—have been considered. An original multiscale protocol, making use of molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations, allowed us to compare the theoretical and experimental circular dichroism spectra of the different DNA topologies, readily providing atomic-level details of the CHE–DNA binding modes. The binding selectivity towards G-quadruplexes is confirmed by both experimental and theoretical determination of the binding free energies. Overall, our mixed computational and experimental approach is able to shed light on the interaction of small molecules with different DNA conformations. In particular, CHE may be seen as the building block of promising drug candidates specifically targeting G-quadruplexes for both antitumoral and antiviral purposes.


DNA Research ◽  
2019 ◽  
Vol 26 (3) ◽  
pp. 273-286 ◽  
Author(s):  
Roman Matyášek ◽  
Alena Kuderová ◽  
Eva Kutílková ◽  
Marek Kučera ◽  
Aleš Kovařík

Abstract The intergenic spacer (IGS) of rDNA is frequently built of long blocks of tandem repeats. To estimate the intragenomic variability of such knotty regions, we employed PacBio sequencing of the Cucurbita moschata genome, in which thousands of rDNA copies are distributed across a number of loci. The rRNA coding regions are highly conserved, indicating intensive interlocus homogenization and/or high selection pressure. However, the IGS exhibits high intragenomic structural diversity. Two repeated blocks, R1 (300–1250 bp) and R2 (290–643 bp), account for most of the IGS variation. They exhibit minisatellite-like features built of multiple periodically spaced short GC-rich sequence motifs with the potential to adopt non-canonical DNA conformations, G-quadruplex-folded and left-handed Z-DNA. The mutual arrangement of these motifs can be used to classify IGS variants into five structural families. Subtle polymorphisms exist within each family due to a variable number of repeats, suggesting the coexistence of an enormous number of IGS variants. The substantial length and structural heterogeneity of IGS minisatellites suggests that the tempo of their divergence exceeds the tempo of the homogenization of rDNA arrays. As frequently occurring among plants, we hypothesize that their instability may influence transcription regulation and/or destabilize rDNA units, possibly spreading them across the genome.


2019 ◽  
Vol 63 (1) ◽  
pp. 109-121 ◽  
Author(s):  
Sergei A. Grigoryev ◽  
Michael Schubert

Abstract The DNA of eukaryotic chromatin and chromosomes is repeatedly supercoiled around histone octamers forming ‘beads-on-a-string’ chains of nucleosomes. The extent of nucleosome chain folding and DNA accessibility vary between different functional and epigenetic states of nuclear chromatin and change dramatically upon cell differentiation, but the molecular mechanisms that direct 3D folding of the nucleosome chain in vivo are still enigmatic. Recent advances in cell imaging and chromosome capture techniques have radically challenged the established paradigm of regular and hierarchical chromatin fibers by highlighting irregular chromatin organization and the importance of the nuclear skeletal structures hoisting the nucleosome chains. Here, we argue that, by analyzing individual structural elements of the nucleosome chain – nucleosome spacing, linker DNA conformations, internucleosomal interactions, and nucleosome chain flexibility – and integrating these elements in multiplex 3D structural models, we can predict the features of the multiplex chromatin folding assemblies underlying distinct developmental and epigenetic states in living cells. Furthermore, partial disassembly of the nuclear structures suspending chromatin fibers may reveal the intrinsic mechanisms of nucleosome chain folding. These mechanisms and structures are expected to provide molecular cues to modify chromatin structure and functions related to developmental and disease processes.


2017 ◽  
Vol 31 (13) ◽  
pp. 1750147 ◽  
Author(s):  
Min Zhang ◽  
Lingyun Gu ◽  
Yangtao Fan ◽  
Yanhui Liu ◽  
Xun Zhou

DNA condensation by multivalent cations has been extensively studied using single molecule experiment methods. To detect temperature effect on DNA condensation at the single molecule level, a strong correlation model was developed to investigate the behavior of DNA with self-interactions under constant tension. The simulation results are in line with the single molecule experiment that the kinetics of DNA condensation take on discontinuous and stepwise manner regardless of the toroid or rod-like conformation. By incorporating the temperature dependence of DNA persistence length into the strong correlation model, the temperature effect on DNA condensation is identified. The results indicate that condensed DNA conformations at single molecule level become more compact with increasing temperature.


2014 ◽  
Vol 70 (7) ◽  
pp. 1790-1800 ◽  
Author(s):  
Zhipu Luo ◽  
Miroslawa Dauter ◽  
Zbigniew Dauter

A large number of Z-DNA hexamer duplex structures and a few oligomers of different lengths are available, but here the first crystal structure of the d(CGCGCGCGCGCG)2dodecameric duplex is presented. Two synchrotron data sets were collected; one was used to solve the structure by the single-wavelength anomalous dispersion (SAD) approach based on the anomalous signal of P atoms, the other set, extending to an ultrahigh resolution of 0.75 Å, served to refine the atomic model to anRfactor of 12.2% and anRfreeof 13.4%. The structure consists of parallel duplexes arranged into practically infinitely long helices packed in a hexagonal fashion, analogous to all other known structures of Z-DNA oligomers. However, the dodecamer molecule shows a high level of flexibility, especially of the backbone phosphate groups, with six out of 11 phosphates modeled in double orientations corresponding to the two previously observed Z-DNA conformations: ZI, with the phosphate groups inclined towards the inside of the helix, and ZII, with the phosphate groups rotated towards the outside of the helix.


Sign in / Sign up

Export Citation Format

Share Document