antiapoptotic activity
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 11)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Boxuan Wei ◽  
Jieyu Gu ◽  
Ran Duan ◽  
Bowen Gao ◽  
Min Wu ◽  
...  

Large to giant congenital melanocytic nevus (lgCMN) is a benign cutaneous tumor that develops during embryogenesis. A large number of lgCMN patients are ineligible for surgical treatment; hence, there is an urgent need to develop pharmacological treatments. Clinically, tumorigenesis and progression essentially halt after birth, resulting in the homeostasis of growth arrest and survival. Numerous studies have employed whole-genome or whole-exome sequencing to clarify the etiology of lgCMN; however, transcriptome sequencing of lgCMN is still lacking. Through comprehensive transcriptome analysis, this study elucidated the ongoing regulation and homeostasis of lgCMN and identified potential targets for treatment. Transcriptome sequencing, identification of differentially expressed genes and hub genes, protein–protein network construction, functional enrichment, pathway analysis, and gene annotations were performed in this study. Immunohistochemistry, real-time quantitative PCR, immunocytofluorescence, and cell cycle assays were employed for further validation. The results revealed several intriguing phenomena in lgCMN, including P16-induced cell cycle arrest, antiapoptotic activity, and immune evasion caused by malfunction of tumor antigen processing. The arrested cell cycle in lgCMN is consistent with its phenotype and rare malignant transformation. Antiapoptotic activity and immune evasion might explain how such heterogeneous cells have avoided elimination. Major histocompatibility complex (MHC) class I-mediated tumor antigen processing was the hub pathway that was significantly downregulated in lgCMN, and ITCH, FBXW7, HECW2, and WWP1 were identified as candidate hub genes. In conclusion, our research provides new perspectives for immunotherapy and targeted therapy.


2021 ◽  
Author(s):  
Kati Tormanen ◽  
Shaohui Wang ◽  
Harry H. Matundan ◽  
Jack Yu ◽  
Ujjaldeep Jaggi ◽  
...  

HSV-1 latency associated transcript (LAT) plays a significant role in efficient establishment of latency and reactivation. LAT has antiapoptotic activity and downregulates expression of components of the Type I interferon pathway. LAT also specifically activates expression of the herpesvirus entry mediator (HVEM), one of seven known receptors used by HSV-1 for cell entry that is crucial for latency and reactivation. However, the mechanism by which LAT regulates HVEM expression is not known. LAT encodes two sncRNAs that are not miRNAs, within its 1.5 kb stable transcript, which also have antiapoptotic activity. These sncRNAs may encode short peptides, but experimental evidence is lacking. Here, we demonstrate that these two sncRNAs control HVEM expression by activating its promoter. Both sncRNAs are required for WT level of activation of HVEM and sncRNA1 is more important in HVEM activation than sncRNA2. Disruption of a putative start codon in sncRNA1 and sncRNA2 sequences reduced HVEM promoter activity, suggesting that sncRNAs may encode a protein. However, we did not detect peptide binding using two chromatin immunoprecipitation (ChIP) approaches and a web-based algorithm predicts low probability that the putative peptides bind to DNA. In addition, computational modeling predicts that sncRNA molecules bind with high affinity to the HVEM promoter and deletion of these binding sites to sncRNA1, sncRNA2 or both reduced HVEM promoter activity. Together, our data suggests that sncRNAs exert their function as RNA molecules, not as proteins, and we provide a model for the predicted binding affinities and binding sites of sncRNA1 and sncRNA2 in the HVEM promoter. IMPORTANCE HSV-1 causes recurrent ocular infections, which is the leading cause of corneal scarring and blindness. Corneal scarring is caused by the host immune response to repeated reactivation events. LAT functions by regulating latency and reactivation, in part by inhibiting apoptosis and activating HVEM expression. However, the mechanism used by LAT to control of HVEM expression is unclear. Here, we demonstrate that two sncRNAs encoded within the 1.5 kb LAT transcript activate HVEM expression by binding to two regions of its promoter. Interfering with these interactions may reduce latency and thereby eye disease associated with reactivation.


2021 ◽  
Vol 85 (2) ◽  
pp. 228-232
Author(s):  
Osamu Ohno ◽  
Keigo Sato ◽  
Ryo Honma ◽  
Ruri Chiba ◽  
Kenji Matsuno

ABSTRACT Inhibitors of thapsigargin-induced cell death in human cervical carcinoma HeLa cells were screened among the metabolites of marine organisms. The MeOH extract of the cyanobacterium Rivularia sp. was found to exhibit inhibitory activity. Column chromatography purification was used to isolate methyl (3R,4E,6Z,15E)-3-hydroxyoctadecatrienoate (MHO) as the active compound. MHO was determined to inhibit apoptotic stimuli-induced cell death in HeLa cells.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5057
Author(s):  
Essmat M. El-Sheref ◽  
Ashraf A. Aly ◽  
Mohammed B. Alshammari ◽  
Alan B. Brown ◽  
Sara Mohamed Naguib Abdel-Hafez ◽  
...  

A series of novel 1,2,3-triazoles hybridized with two quinolin-2-ones, was designed and synthesized through click reactions. The structures of the synthesized compounds were elucidated by NMR, IR, and mass spectra in addition to elemental analysis. The synthesized compounds were assessed for their antiapoptotic activity in testis, as testicular torsion is the main cause of male infertility. This effect was studied in light of decreasing tissue damage induced by I/R in the testis of rats using N-acetylcysteine (NAC) as an antiapoptotic reference. Compounds 6a–c were the most active antiapoptotic hybrids with significant measurements for malondialdehyde (MDA) and total antioxidant capacity (TAC) and the apoptotic biomarkers (testicular testosterone, TNFα, and caspase-3) in comparison to the reference. A preliminary mechanistic study was performed to improve the antiapoptotic activity through caspase-3 inhibition. A compound assigned as 6-methoxy-4-(4-(((2-oxo-1,2-dihydroquinolin-4-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)quinolin-2(1H)-one (6c) was selected as a representative of the most active hybrids in comparison to NAC. Assay of cytochrome C for 6c revealed an attenuation of cytochrome C level about 3.54 fold, comparable to NAC (4.13 fold). In caspases-3,8,9 assays, 6c was found to exhibit more potency and selectivity toward caspase-3 than other caspases. The testicular histopathological investigation was carried out on all targeted compounds 6a–g, indicating a significant improvement in the spermatogenesis process for compounds 6a–c if compared to the reference relative to the control. Finally, molecular docking studies were done at the caspase-3 active site to suggest possible binding modes. Hence, it could conceivably be hypothesized that compounds 6a–c could be considered good lead candidate compounds as antiapoptotic agents.


2020 ◽  
Vol 88 (6) ◽  
Author(s):  
Dominik Brokatzky ◽  
Oliver Kretz ◽  
Georg Häcker

ABSTRACT Apoptotic cell death can be an efficient defense reaction of mammalian cells infected with obligate intracellular pathogens; the host cell dies and the pathogen cannot replicate. While this is well established for viruses, there is little experimental support for such a concept in bacterial infections. All Chlamydiales are obligate intracellular bacteria, and different species infect vastly different hosts. Chlamydia trachomatis infects human epithelial cells; Parachlamydia acanthamoebae replicates in amoebae. We here report that apoptosis impedes growth of P. acanthamoebae in mammalian cells. In HeLa human epithelial cells, P. acanthamoebae infection induced apoptosis, which was inhibited when mitochondrial apoptosis was blocked by codeletion of the mediators of mitochondrial apoptosis, Bax and Bak, by overexpression of Bcl-XL or by deletion of the apoptosis initiator Noxa. Deletion of Bax and Bak in mouse macrophages also inhibited apoptosis. Blocking apoptosis permitted growth of P. acanthamoebae in HeLa cells, as measured by fluorescence in situ hybridization, assessment of genome replication and protein synthesis, and the generation of infectious progeny. Coinfection with C. trachomatis inhibited P. acanthamoebae-induced apoptosis, suggesting that the known antiapoptotic activity of C. trachomatis can also block P. acanthamoebae-induced apoptosis. C. trachomatis coinfection could not rescue P. acanthamoebae growth in HeLa; in coinfected cells, C. trachomatis even suppressed the growth of P. acanthamoebae independently of apoptosis, while P. acanthamoebae surprisingly enhanced the growth of C. trachomatis. Our results show that apoptosis can be used in the defense of mammalian cells against obligate intracellular bacteria and suggest that the known antiapoptotic activity of human pathogenic chlamydiae is indeed required to permit their growth in human cells.


2020 ◽  
Vol 189 ◽  
pp. 112050 ◽  
Author(s):  
Azizah M. Malebari ◽  
Darren Fayne ◽  
Seema M. Nathwani ◽  
Fiona O’Connell ◽  
Sara Noorani ◽  
...  

2019 ◽  
Vol 77 (9) ◽  
Author(s):  
Fangzhen Luo ◽  
Mingyi Shu ◽  
Silu Gong ◽  
Yating Wen ◽  
Bei He ◽  
...  

ABSTRACT Chlamydia trachomatis has evolved strategies to prevent host cell apoptosis to evade the host immune defense. However, the precise mechanisms of antiapoptotic activity of C. trachomatis still need to be clarified. Pgp3, one of eight plasmid proteins of C. trachomatis, has been identified to be closely associated with chlamydial virulence. In this study, we attempted to explore the effects and the mechanisms of Pgp3 protein on apoptosis in HeLa cells; the results showed that Pgp3 increased Bcl-2/Bax ratio and prevented caspase-3 activation to suppress apoptosis induced by TNF-α and cycloheximide (CHX) through ERK1/2 pathway activation. Downregulation of DJ-1 with siRNA-DJ-1(si-DJ-1) reduced ERK1/2 phosphorylation and elevated apoptotic rate significantly in Pgp3-HeLa cells. However, inhibition of ERK1/2 signal pathway with ERK inhibitor PD98059 had little effect on DJ-1 expression. These findings confirm that plasmid protein Pgp3 contributes to apoptosis resistance through ERK1/2 signal pathway mediated by upregulation of DJ-1 expression. Therefore, the present study provided novel insights into the role of Pgp3 in apoptosis and suggested that manipulation of the host apoptosis response could be a new approach for the prevention and treatment of C. trachomatis infection.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Ok-Joo Sul ◽  
Monisha Rajasekaran ◽  
Hyun-Jung Park ◽  
Jae-Hee Suh ◽  
Hye-Seon Choi

Recent findings suggest that microRNAs (miRs) play a critical role in osteoclastogenesis, which regulates bone loss. We hypothesized that inflammation induces miR-29b, which increases the survival rate in osteoclasts (OCs), leading to bone loss. The expression level of miR-29b increased in OC stimulated by lipopolysaccharide (LPS) in an in vitro system which correlated with its increase in tibiae from mice that received LPS injections compared with those that received vehicle treatment. An miR-29b mimic increased OC survival rate without any change in OC differentiation, and furthermore, the inhibition of endogenous miR-29b induced by LPS decreased OC survival rate. Increased OC survival rate after overexpression of miR-29b was associated with antiapoptotic activity, as shown by staining annexin V-positive cells. We found that a target gene of miR-29b is BCL-2-modifying factor (Bmf), which acts as a proapoptotic factor, and that miR-29b binds to the 3′-UTR ofBmf. Our data demonstrate that LPS-induced miR-29b increases the number of OC by enhancing OC survival through decreased BMF.


Sign in / Sign up

Export Citation Format

Share Document