scholarly journals Regulation of the Escherichia coli rmf gene encoding the ribosome modulation factor: growth phase- and growth rate-dependent control.

1993 ◽  
Vol 12 (2) ◽  
pp. 625-630 ◽  
Author(s):  
M. Yamagishi ◽  
H. Matsushima ◽  
A. Wada ◽  
M. Sakagami ◽  
N. Fujita ◽  
...  
2006 ◽  
Vol 188 (16) ◽  
pp. 5775-5782 ◽  
Author(s):  
Prabhat Mallik ◽  
Brian J. Paul ◽  
Steven T. Rutherford ◽  
Richard L. Gourse ◽  
Robert Osuna

ABSTRACT DksA is a critical transcription factor in Escherichia coli that binds to RNA polymerase and potentiates control of rRNA promoters and certain amino acid promoters. Given the kinetic similarities between rRNA promoters and the fis promoter (Pfis), we investigated the possibility that DksA might also control transcription from Pfis. We show that the absence of dksA extends transcription from Pfis well into the late logarithmic and stationary growth phases, demonstrating the importance of DksA for growth phase-dependent regulation of fis. We also show that transcription from Pfis increases with steady-state growth rate and that dksA is absolutely required for this regulation. In addition, both DksA and ppGpp are required for inhibition of Pfis promoter activity following amino acid starvation, and these factors act directly and synergistically to negatively control Pfis transcription in vitro. DksA decreases the half-life of the intrinsically short-lived fis promoter-RNA polymerase complex and increases its sensitivity to the concentration of CTP, the predominant initiating nucleotide triphosphate for this promoter. This work extends our understanding of the multiple factors controlling fis expression and demonstrates the generality of the DksA requirement for regulation of kinetically similar promoters.


2001 ◽  
Vol 183 (20) ◽  
pp. 6126-6134 ◽  
Author(s):  
Julio E. Cabrera ◽  
Ding Jun Jin

ABSTRACT The Escherichia coli rapA gene encodes the RNA polymerase (RNAP)-associated protein RapA, which is a bacterial member of the SWI/SNF helicase-like protein family. We have studied therapA promoter and its regulation in vivo and determined the interaction between RNAP and the promoter in vitro. We have found that the expression of rapA is growth phase dependent, peaking at the early log phase. The growth phase control ofrapA is determined at least by one particular feature of the promoter: it uses CTP as the transcription-initiating nucleotide instead of a purine, which is used for most E. colipromoters. We also found that the rapA promoter is subject to growth rate regulation in vivo and that it forms intrinsic unstable initiation complexes with RNAP in vitro. Furthermore, we have shown that a GC-rich or discriminator sequence between the −10 and +1 positions of the rapA promoter is responsible for its growth rate control and the instability of its initiation complexes with RNAP.


Nature ◽  
1984 ◽  
Vol 312 (5989) ◽  
pp. 75-77 ◽  
Author(s):  
G. Nilsson ◽  
J. G. Belasco ◽  
S. N. Cohen ◽  
A. von Gabain

2005 ◽  
Vol 187 (6) ◽  
pp. 1951-1958 ◽  
Author(s):  
Toshiko Aiso ◽  
Hideji Yoshida ◽  
Akira Wada ◽  
Reiko Ohki

ABSTRACT The expression of ribosome modulation factor (RMF) is induced during stationary phase in Escherichia coli. RMF participates in the dimerization of 70S ribosomes to form the 100S ribosome, which is the translationally inactive form of the ribosome. To elucidate the involvement of the control of mRNA stability in growth-phase-specific rmf expression, we investigated rmf mRNA stability in stationary-phase cells and cells inoculated into fresh medium. The rmf mRNA was found to have an extremely long half-life during stationary phase, whereas destabilization of this mRNA took place after the culture was inoculated into fresh medium. RMF and 100S ribosomes disappeared from cells 1 min after inoculation. In addition to control by ppGpp-dependent transcription, these results indicate that the modulation of rmf mRNA stability is also involved in the regulation of growth-phase-specific rmf expression. Unexpectedly, the postinoculation degradation of rmf mRNA was suppressed by the addition of rifampin, suggesting that de novo RNA synthesis is necessary for degradation. This degradation was also suppressed in both a poly(A) polymerase-deficient and an rne-131 mutant strain. We cloned and sequenced the 3′-proximal regions of rmf mRNAs and found that most of these 3′ ends terminated at the ρ-independent terminator with the addition of a one- to five-A oligo(A) tail in either stationary-phase or inoculated cells. No difference was observed in the length of the poly(A) tail between stationary-phase and inoculated cells. These results suggest that a certain postinoculation-specific regulatory factor participates in the destabilization of rmf mRNA and is dependent on polyadenylation.


2000 ◽  
Vol 182 (2) ◽  
pp. 536-539 ◽  
Author(s):  
Justina Voulgaris ◽  
Dmitry Pokholok ◽  
W. Mike Holmes ◽  
Craig Squires ◽  
Catherine L. Squires

ABSTRACT Growth rate-independent rrn P1 promoter mutants were tested for their ability to respond to changes in rrn gene dosage. Most were found to be normal for the feedback response. In addition, cellular levels of the initiating nucleoside triphosphates remained unchanged when the rrn gene dosage was altered. These results suggest that the feedback response cannot be the mechanism for growth rate-dependent control of rRNA synthesis and that the relationship between these two processes may be more complicated than is currently understood.


Sign in / Sign up

Export Citation Format

Share Document