scholarly journals Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation.

1994 ◽  
Vol 13 (5) ◽  
pp. 1205-1215 ◽  
Author(s):  
A. Pause ◽  
N. Méthot ◽  
Y. Svitkin ◽  
W.C. Merrick ◽  
N. Sonenberg
1999 ◽  
Vol 342 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Shinya SATOH ◽  
Makoto HIJIKATA ◽  
Hiroshi HANDA ◽  
Kunitada SHIMOTOHNO

Eukaryotic translation initiation factor 2α (eIF-2α), a target molecule of the interferon-inducible double-stranded-RNA-dependent protein kinase (PKR), was cleaved in apoptotic Saos-2 cells on treatment with poly(I)˙poly(C) or tumour necrosis factor α. This cleavage occurred with a time course similar to that of poly(ADP-ribose) polymerase, a well-known caspase substrate. In addition, eIF-2α was cleaved by recombinant active caspase-3 in vitro. By site-directed mutagenesis, the cleavage site was mapped to an Ala-Glu-Val-Asp300 ↓ Gly301 sequence located in the C-terminal portion of eIF-2α. PKR phosphorylates eIF-2α on Ser51, resulting in the suppression of protein synthesis. PKR-mediated translational suppression was repressed when the C-terminally cleaved product of eIF-2α was overexpressed in Saos-2 cells, even though PKR can phosphorylate this cleaved product. These results suggest that caspase-3 or related protease(s) can modulate the efficiency of protein synthesis by cleaving the α subunit of eIF-2, a key component in the initiation of translation.


1991 ◽  
Vol 11 (7) ◽  
pp. 3463-3471 ◽  
Author(s):  
S R Schmid ◽  
P Linder

The eukaryotic translation initiation factor 4A (eIF-4A) possesses an in vitro helicase activity that allows the unwinding of double-stranded RNA. This activity is dependent on ATP hydrolysis and the presence of another translation initiation factor, eIF-4B. These two initiation factors are thought to unwind mRNA secondary structures in preparation for ribosome binding and initiation of translation. To further characterize the function of eIF-4A in cellular translation and its interaction with other elements of the translation machinery, we have isolated mutations in the TIF1 and TIF2 genes encoding eIF-4A in Saccharomyces cerevisiae. We show that three highly conserved domains of the D-E-A-D protein family, encoding eIF-4A and other RNA helicases, are essential for protein function. Only in rare cases could we make a conservative substitution without affecting cell growth. The mutants show a clear correlation between their growth and in vivo translation rates. One mutation that results in a temperature-sensitive phenotype reveals an immediate decrease in translation activity following a shift to the nonpermissive temperature. These in vivo results confirm previous in vitro data demonstrating an absolute dependence of translation on the TIF1 and TIF2 gene products.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Felix H. Shek ◽  
Sarwat Fatima ◽  
Nikki P. Lee

Hepatocellular carcinoma (HCC) is a primary liver malignancy and accounts for most of the total liver cancer cases. Lack of treatment options and late diagnosis contribute to high mortality rate of HCC. In eukaryotes, translation of messenger RNA (mRNA) to protein is a key process in protein biosynthesis in which initiation of translation involves interaction of different eukaryotic translation initiation factors (eIFs), ribosome subunits and mRNAs. Eukaryotic translation initiation factor 5A (eIF5A) is one of the eIFs involved in translation initiation and eIF5A2, one of its isoforms, is upregulated in various cancers including HCC as a result of chromosomal instability, where it resides. In HCC, eIF5A2 expression is associated with adverse prognosis such as presence of tumor metastasis and venous infiltration. Based on eIF5A2 functional studies, suppressing eIF5A2 expression by short interfering RNA alleviates the tumorigenic properties of HCC cellsin vitrowhile ectopic expression of eIF5A2 enhances the aggressiveness of HCC cellsin vivoandin vitroby inducing epithelial-mesenchymal transition. In conclusion, eIF5A2 is a potential prognostic marker as well as a therapeutic target for HCC.


2002 ◽  
Vol 22 (21) ◽  
pp. 7405-7416 ◽  
Author(s):  
Constantinos Koumenis ◽  
Christine Naczki ◽  
Marianne Koritzinsky ◽  
Sally Rastani ◽  
Alan Diehl ◽  
...  

ABSTRACT Hypoxia profoundly influences tumor development and response to therapy. While progress has been made in identifying individual gene products whose synthesis is altered under hypoxia, little is known about the mechanism by which hypoxia induces a global downregulation of protein synthesis. A critical step in the regulation of protein synthesis in response to stress is the phosphorylation of translation initiation factor eIF2α on Ser51, which leads to inhibition of new protein synthesis. Here we report that exposure of human diploid fibroblasts and transformed cells to hypoxia led to phosphorylation of eIF2α, a modification that was readily reversed upon reoxygenation. Expression of a transdominant, nonphosphorylatable mutant allele of eIF2α attenuated the repression of protein synthesis under hypoxia. The endoplasmic reticulum (ER)-resident eIF2α kinase PERK was hyperphosphorylated upon hypoxic stress, and overexpression of wild-type PERK increased the levels of hypoxia-induced phosphorylation of eIF2α. Cells stably expressing a dominant-negative PERK allele and mouse embryonic fibroblasts with a homozygous deletion of PERK exhibited attenuated phosphorylation of eIF2α and reduced inhibition of protein synthesis in response to hypoxia. PERK−/− mouse embryo fibroblasts failed to phosphorylate eIF2α and exhibited lower survival after prolonged exposure to hypoxia than did wild-type fibroblasts. These results indicate that adaptation of cells to hypoxic stress requires activation of PERK and phosphorylation of eIF2α and suggest that the mechanism of hypoxia-induced translational attenuation may be linked to ER stress and the unfolded-protein response.


2016 ◽  
Author(s):  
Colin Echeverría Aitken ◽  
Petra Beznosková ◽  
Vladislava Vlčkova ◽  
Wen-Ling Chiu ◽  
Fujun Zhou ◽  
...  

AbstractEukaryotic translation initiation factor 3 (eIF3) is a central player in recruitment of the pre-initiation complex (PIC) to mRNA. We probed the effects on mRNA recruitment of a library of S. cerevisiae eIF3 functional variants spanning its 5 essential subunits using an in vitro-reconstituted system. Mutations throughout eIF3 disrupt its interaction with the PIC and diminish its ability to accelerate recruitment to a native yeast mRNA. Alterations to the eIF3a CTD and eIF3b/i/g significantly slow mRNA recruitment, and mutations within eIF3b/i/g destabilize eIF2·GTP·Met-tRNAi binding to the PIC. Using model mRNAs lacking contacts with the 40S entry or exit channels, we uncover a critical role for eIF3 requiring the eIF3a NTD, in stabilizing mRNA interactions at the exit channel, and an ancillary role at the entry channel requiring residues of the eIF3a CTD. These functions are redundant: defects at each channel can be rescued by filling the other channel with mRNA.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Colin Echeverría Aitken ◽  
Petra Beznosková ◽  
Vladislava Vlčkova ◽  
Wen-Ling Chiu ◽  
Fujun Zhou ◽  
...  

Eukaryotic translation initiation factor 3 (eIF3) is a central player in recruitment of the pre-initiation complex (PIC) to mRNA. We probed the effects on mRNA recruitment of a library of S. cerevisiae eIF3 functional variants spanning its 5 essential subunits using an in vitro-reconstituted system. Mutations throughout eIF3 disrupt its interaction with the PIC and diminish its ability to accelerate recruitment to a native yeast mRNA. Alterations to the eIF3a CTD and eIF3b/i/g significantly slow mRNA recruitment, and mutations within eIF3b/i/g destabilize eIF2•GTP•Met-tRNAi binding to the PIC. Using model mRNAs lacking contacts with the 40S entry or exit channels, we uncovered a critical role for eIF3 requiring the eIF3a NTD, in stabilizing mRNA interactions at the exit channel, and an ancillary role at the entry channel requiring residues of the eIF3a CTD. These functions are redundant: defects at each channel can be rescued by filling the other channel with mRNA.


1991 ◽  
Vol 11 (7) ◽  
pp. 3463-3471 ◽  
Author(s):  
S R Schmid ◽  
P Linder

The eukaryotic translation initiation factor 4A (eIF-4A) possesses an in vitro helicase activity that allows the unwinding of double-stranded RNA. This activity is dependent on ATP hydrolysis and the presence of another translation initiation factor, eIF-4B. These two initiation factors are thought to unwind mRNA secondary structures in preparation for ribosome binding and initiation of translation. To further characterize the function of eIF-4A in cellular translation and its interaction with other elements of the translation machinery, we have isolated mutations in the TIF1 and TIF2 genes encoding eIF-4A in Saccharomyces cerevisiae. We show that three highly conserved domains of the D-E-A-D protein family, encoding eIF-4A and other RNA helicases, are essential for protein function. Only in rare cases could we make a conservative substitution without affecting cell growth. The mutants show a clear correlation between their growth and in vivo translation rates. One mutation that results in a temperature-sensitive phenotype reveals an immediate decrease in translation activity following a shift to the nonpermissive temperature. These in vivo results confirm previous in vitro data demonstrating an absolute dependence of translation on the TIF1 and TIF2 gene products.


2000 ◽  
Vol 347 (3) ◽  
pp. 703-709 ◽  
Author(s):  
Glória M. THOMPSON ◽  
Eliza PACHECO ◽  
Eduardo O. MELO ◽  
Beatriz A. CASTILHO

The eukaryotic translation initiation factor 2 (eIF2) binds the methionyl-initiator tRNA in a GTP-dependent mode. This complex associates with the 40 S ribosomal particle, which then, with the aid of other factors, binds to the 5ʹ end of the mRNA and migrates to the first AUG codon, where eIF5 promotes GTP hydrolysis, followed by the formation of the 80 S ribosome. Here we provide a comparative sequence analysis of the β subunit of eIF2 and its archaeal counterpart (aIF2β). aIF2β differs from eIF2β in not possessing an N-terminal extension implicated in binding RNA, eIF5 and eIF2B. The remaining sequences are highly conserved, and are shared with eIF5. Previously isolated mutations in the yeast eIF2β, which allow initiation of translation at UUG codons due to the uncovering of an intrinsic GTPase activity in eIF2, involve residues that are conserved in aIF2β, but not in eIF5. We show that the sequence of eIF2β homologous to aIF2β is sufficient for binding eIF2γ, the only subunit with which it interacts, and comprises, at the most, 78 residues. eIF5 does not interact with eIF2γ, despite its similarity with eIF2β, probably because of a gap in homology in this region. These observations have implications for the evolution of the mechanism of translation initiation.


1995 ◽  
Vol 15 (8) ◽  
pp. 4525-4535 ◽  
Author(s):  
D R Evans ◽  
C Rasmussen ◽  
P J Hanic-Joyce ◽  
G C Johnston ◽  
R A Singer ◽  
...  

The Saccharomyces cerevisiae PRT1 gene product Prt1p is a component of translation initiation factor eIF-3, and mutations in PRT1 inhibit translation initiation. We have investigated structural and functional aspects of Prt1p and its gene. Transcript analysis and deletion of the PRT1 5' end revealed that translation of PRT1 mRNA is probably initiated at the second in-frame ATG in the open reading frame. The amino acid changes encoded by six independent temperature-sensitive prt1 mutant alleles were found to be distributed throughout the central and C-terminal regions of Prt1p. The temperature sensitivity of each mutant allele was due to a single missense mutation, except for the prt1-2 allele, in which two missense mutations were required. In-frame deletion of an N-terminal region of Prt1p generated a novel, dominant-negative form of Prt1p that inhibits translation initiation even in the presence of wild-type Prt1p. Subcellular fractionation suggested that the dominant-negative Prt1p competes with wild-type Prt1p for association with a component of large Prt1p complexes and as a result inhibits the binding of wild-type Prt1p to the 40S ribosome.


Sign in / Sign up

Export Citation Format

Share Document