An acidic sequence within the cytoplasmic domain of furin functions as a determinant of trans-Golgi network localization and internalization from the cell surface.

1995 ◽  
Vol 14 (20) ◽  
pp. 4961-4975 ◽  
Author(s):  
P. Voorhees ◽  
E. Deignan ◽  
E. van Donselaar ◽  
J. Humphrey ◽  
M. S. Marks ◽  
...  
1993 ◽  
Vol 120 (1) ◽  
pp. 67-75 ◽  
Author(s):  
S Méresse ◽  
B Hoflack

We have previously shown that two serine residues present in two conserved regions of the bovine cation-independent mannose 6-phosphate receptor (CI-MPR) cytoplasmic domain are phosphorylated in vivo (residues 2421 and 2492 of the full length bovine CI-MPR precursor). In this study, we have used CHO cells to investigate the phosphorylation state of these two serines along the different steps of the CI-MPR exocytic and endocytic recycling pathways. Transport and phosphorylation of the CI-MPR in the biosynthetic pathway were examined using deoxymannojirimycin (dMM), a specific inhibitor of the cis-Golgi processing enzyme alpha-mannosidase I which leads to the accumulation of N-linked high mannose oligosaccharides on glycoproteins. Upon removal of dMM, normal processing to complex-type oligosaccharides (galactosylation and then sialylation) occurs on the newly synthesized glycoproteins, including the CI-MPR which could then be purified and analyzed on lectin affinity columns. Phosphorylation of the newly synthesized CI-MPR was concomitant with the sialylation of its oligosaccharides and appeared as a major albeit transient modification. Phosphorylation of the cell surface CI-MPR was examined during its endocytosis as well as its return to the Golgi using antibody tagging and exogalactosylation. The cell surface CI-MPR was not phosphorylated when it entered clathrin-coated pits or when it moved to the early and late endosomes. In contrast, the surface CI-MPR was phosphorylated when it had been resialylated upon its return to the trans-Golgi network. Subcellular fractionation experiments showed that the phosphorylated CI-MPR and the corresponding kinase were found in clathrin-coated vesicles. Collectively, these results indicate that phosphorylation of the two serines in the CI-MPR cytoplasmic domain is associated with a single step of transport of its recycling pathways and occurs when this receptor is in the trans-Golgi network and/or has left this compartment via clathrin-coated vesicles.


1995 ◽  
Vol 270 (47) ◽  
pp. 28397-28401 ◽  
Author(s):  
Senye Takahashi ◽  
Tsutomu Nakagawa ◽  
Tomohiro Banno ◽  
Tsuyoshi Watanabe ◽  
Kazuo Murakami ◽  
...  

1999 ◽  
Vol 112 (11) ◽  
pp. 1721-1732 ◽  
Author(s):  
M.J. Francis ◽  
E.E. Jones ◽  
E.R. Levy ◽  
R.L. Martin ◽  
S. Ponnambalam ◽  
...  

The protein encoded by the Menkes disease gene (MNK) is localised to the Golgi apparatus and cycles between the trans-Golgi network and the plasma membrane in cultured cells on addition and removal of copper to the growth medium. This suggests that MNK protein contains active signals that are involved in the retention of the protein to the trans-Golgi network and retrieval of the protein from the plasma membrane. Previous studies have identified a signal involved in Golgi retention within transmembrane domain 3 of MNK. To identify a motif sufficient for retrieval of MNK from the plasma membrane, we analysed the cytoplasmic domain, downstream of transmembrane domain 7 and 8. Chimeric constructs containing this cytoplasmic domain fused to the reporter molecule CD8 localised the retrieval signal(s) to 62 amino acids at the C terminus. Further studies were performed on putative internalisation motifs, using site-directed mutagenesis, protein expression, chemical treatment and immunofluorescence. We observed that a di-leucine motif (L1487L1488) was essential for rapid internalisation of chimeric CD8 proteins and the full-length Menkes cDNA from the plasma membrane. We suggest that this motif mediates the retrieval of MNK from the plasma membrane into the endocytic pathway, via the recycling endosomes, but is not sufficient on its own to return the protein to the Golgi apparatus. These studies provide a basis with which to identify other motifs important in the sorting and delivery of MNK from the plasma membrane to the Golgi apparatus.


2003 ◽  
Vol 14 (3) ◽  
pp. 973-986 ◽  
Author(s):  
Annette M. Shewan ◽  
Ellen M. van Dam ◽  
Sally Martin ◽  
Tang Bor Luen ◽  
Wanjin Hong ◽  
...  

Insulin stimulates glucose transport in fat and muscle cells by triggering exocytosis of the glucose transporter GLUT4. To define the intracellular trafficking of GLUT4, we have studied the internalization of an epitope-tagged version of GLUT4 from the cell surface. GLUT4 rapidly traversed the endosomal system en route to a perinuclear location. This perinuclear GLUT4 compartment did not colocalize with endosomal markers (endosomal antigen 1 protein, transferrin) or TGN38, but showed significant overlap with the TGN target (t)-solubleN-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Syntaxins 6 and 16. These results were confirmed by vesicle immunoisolation. Consistent with a role for Syntaxins 6 and 16 in GLUT4 trafficking we found that their expression was up-regulated significantly during adipocyte differentiation and insulin stimulated their movement to the cell surface. GLUT4 trafficking between endosomes and trans-Golgi network was regulated via an acidic targeting motif in the carboxy terminus of GLUT4, because a mutant lacking this motif was retained in endosomes. We conclude that GLUT4 is rapidly transported from the cell surface to a subdomain of thetrans-Golgi network that is enriched in the t-SNAREs Syntaxins 6 and 16 and that an acidic targeting motif in the C-terminal tail of GLUT4 plays an important role in this process.


1998 ◽  
Vol 111 (23) ◽  
pp. 3451-3458 ◽  
Author(s):  
G. Banting ◽  
R. Maile ◽  
E.P. Roquemore

It has been shown previously that whilst the rat type I integral membrane protein TGN38 (ratTGN38) is predominantly localised to the trans-Golgi network this protein does reach the cell surface from where it is internalised and delivered back to the trans-Golgi network. This protein thus provides a suitable tool for the investigation of trafficking pathways between the trans-Golgi network and the cell surface and back again. The human orthologue of ratTGN38, humTGN46, behaves in a similar fashion. These proteins are internalised from the cell surface via clathrin mediated endocytosis, a process which is dependent upon the GTPase activity of dynamin. We thus reasoned that humTGN46 would accumulate at the surface of cells rendered defective in clathrin mediated endocytosis by virtue of the fact that they express a GTPase defective mutant of dynamin I. It did not. In fact, expression of a dominant negative GTPase defective mutant of dynamin I had no detectable effect on the steady state distribution of humTGN46. One explanation for this observation is that humTGN46 does not travel directly to the cell surface from the trans-Golgi network. Further studies on cells expressing the dominant negative GTPase defective mutant of dynamin I indicate that the major recycling pathway for humTGN46 is in fact between the trans-Golgi network and the early endosome.


1995 ◽  
Vol 15 (3) ◽  
pp. 1797-1807 ◽  
Author(s):  
BD Trapp ◽  
GJ Kidd ◽  
P Hauer ◽  
E Mulrenin ◽  
CA Haney ◽  
...  

2012 ◽  
Vol 31 (20) ◽  
pp. 3976-3990 ◽  
Author(s):  
Yuichi Wakana ◽  
Josse van Galen ◽  
Felix Meissner ◽  
Margherita Scarpa ◽  
Roman S Polishchuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document