MAIZE ENDOSPERM TISSUE GROWN IN VITRO III. DEVELOPMENT OF A SYNTHETIC MEDIUM

1960 ◽  
Vol 47 (8) ◽  
pp. 641-647 ◽  
Author(s):  
Jacob Straus
1954 ◽  
Vol 41 (8) ◽  
pp. 687-694 ◽  
Author(s):  
Jacob Straus ◽  
Carl D. LaRue

Crop Science ◽  
1974 ◽  
Vol 14 (5) ◽  
pp. 676-678
Author(s):  
D. L. Garwood ◽  
J. S. Shenk ◽  
R. F. Barnes

1976 ◽  
Vol 71 (2) ◽  
pp. 231-238 ◽  
Author(s):  
RÉGINE PICON

SUMMARY Testosterone secretion by foetal rat testes (13½–21½ days of gestation) explanted for 3 days in a synthetic medium was measured every 24 h by radioimmunoassay. During the first day of explantation, the foetal testis produced, respectively, 1013 ± 132, 8734 ± 1118, 9179 ± 2185 and 3886 ± 309 (s.e.m.) pg/testis when explanted at 14½, 16½, 18½ and 21½ days respectively. Testosterone production by 13½-day-old testes was not detectable on the first day of culture, but appeared on subsequent days. Daily testosterone secretion increased on the 2nd and 3rd days of culture in 14½-day-old testes and decreased in older stages. These results suggest that the functional differentiation of the testis is independent of stimulatory factors like gonadotrophins. Dibutyryl cyclic AMP was found to stimulate testosterone production significantly from 14½ days of gestation onwards.


Development ◽  
1966 ◽  
Vol 15 (2) ◽  
pp. 133-141
Author(s):  
T. N. Chapekar ◽  
G. V. Nayak ◽  
Kamal J. Ranadive

Short-term maintenance of mouse and rat ovary in organotypic culture system is no longer a problem (Martinovitch, 1938; Gaillard, 1953; Trowell, 1959). Gaillard (1953) cultivated ovaries from 7- to 8-day-old and 21-day-old mice for a week on the plasma clot. Trowell (1959) maintained ovaries of 8-day-old mice on a synthetic medium in an O2-CO2 atmosphere for 9 days. He observed no histological differentiation in the tissues of the ovary. What needs confirmation and further investigation is the possibility of maintenance of functional activity of the ovary under culture conditions. A study was therefore undertaken to investigate if an ovary, cultivated in vitro for some time, shows hormonal activity when transplanted in vivo. In the present work cultured ovaries were grafted in the anterior eye-chamber of spayed female mice and the development of secondary sex organs such as mammary glands and uterus was studied.


1942 ◽  
Vol 75 (4) ◽  
pp. 383-394 ◽  
Author(s):  
W. Barry Wood ◽  
Robert Austrian

1. In cultures of Staphylococus aureus in a synthetic medium nicotinamide and cozymase were shown to block the bacteriostatic action of chemically unrelated sulfonamide drugs as well as the chemically related compound sulfapyridine. The antibacterial properties of organic dyes totally unrelated to the sulfonamide compounds (methylene blue and thionine) were also nullified by the addition of cozymase to the culture medium. 2. The antagonistic action of the pyridine-containing coenzyme, cozymase, was found, by quantitative study, to be no greater against sulfapyridine than against other structurally dissimilar sulfonamide compounds. 3. The antidrug effects of nicotinamide and cozymase in staphylococcus cultures were observed to be directly proportional to their ability to stimulate the growth of the organism in the synthetic medium. When tested in cultures of B. coli in which they failed to accelerate bacterial growth, these same substances failed to influence the bacteriostatic action of the sulfonamide drugs. 4. The in vitro action of the coenzyme, cocarboxylase, as measured in the Warburg respirometer, was shown to be unaffected by the chemically related drug, sulfathiazole, even when the latter was present in great excess. The above observations fail to support the theory that sulfapyridine, sulfathiazole, and sulfadiazine prevent bacterial growth by interfering with the functioning of the chemically related coenzymes, cozymase, and cocarboxylase. The mode of action of sulfanilamide and its more common derivatives is discussed in the light of these observations, and a tentative theory is offered to explain the differences in bacteriostatic potency exhibited by the various sulfonamide compounds.


Vox Sanguinis ◽  
1991 ◽  
Vol 60 (1) ◽  
pp. 16-22 ◽  
Author(s):  
R. Fijnheer ◽  
H.A. Veldman ◽  
A.J.M. Eertwegh ◽  
C.W.N. Gouwerok ◽  
C.H.E. Homburg ◽  
...  

Development ◽  
1984 ◽  
Vol 82 (1) ◽  
pp. 25-40
Author(s):  
E. Becchetti ◽  
G. Stabellini ◽  
A. Caruso ◽  
P. Carinci

Several reports have suggested that mesenchymal glycosaminoglycans (GAG) may be involved in the regulatory role of epithelial differentiation. Some researchers have pointed out that exogenousGAG affects extracellular GAG accumulation. We have therefore examined the effect of added GAG on two typical processes of avian skin differentiation: keratinization and feather formation. Glycosaminoglycans, either obtained from fibroblasts cultures (conditioned media) or purified commercially available GAG were administered to 5/6-day chick embryo back skin explants. Control cultures were supported with 199 synthetic medium, chick embryo extract or calf serum. Explants have been examined by histological and histochemical procedures. Skin explants maintained in vitro for 7 days exhibited an epithelial differentiation and a dermal histochemical reactivity which were related to the composition of the culture medium. In conditioned media from dermal fibroblasts, but not from heart or lung fibroblasts, explants always exhibited keratinization. In purified-GAG-containing media, keratinization was observed with condroitinsulphates and not with hyaluronic acid. Keratinization was always related toprevalent accumulation of hyaluronic acid in the underlying mesenchyme whereas feather formation was in relation to deposits of condroitinsulphates in dermis pulp. The above findings demonstrate that exogenous GAG is able to modulate avian skin differentiation and that this regulation is linked to an influence on the mesenchymal GAG pattern.


1958 ◽  
Vol 36 (1) ◽  
pp. 171-184 ◽  
Author(s):  
Arthur E. Pasieka ◽  
Helen J. Morton ◽  
Joseph F. Morgan

Freshly-explanted chick embryonic kidney, chick embryonic liver, and trypsinized monkey kidney cortex cells have been cultivated in vitro in completely synthetic medium M 150. The amino acid changes in the nutrient medium during cultivation of these tissues have been studied by paper chromatography. A characteristic pattern of amino acid uptake and accumulation in the used culture medium has been demonstrated with each type of tissue culture. It has also been shown that, while the amino acid changes in the medium are different with each type of tissue culture, all cultures examined removed adenine from the medium and liberated small amounts of material thought to be hypoxanthine.


Sign in / Sign up

Export Citation Format

Share Document