skin explants
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 50)

H-INDEX

27
(FIVE YEARS 4)

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaojuan Tan ◽  
Xi Cheng ◽  
Mei Hu ◽  
Yifan Zhang ◽  
Aiqun Jia ◽  
...  

AbstractBacterial biofilms formation is one of the major reasons for treatment failure in chronic wound infections. Therefore, diagnostic biomarkers remain the best option for prevention and treatment of chronic wound infections by biofilms. Herein, Pseudomonas aeruginosa PAO1 was used to mimic biofilm development in porcine skin explants wells as ex vivo wound model. The microscopic imaging showed that PAO1 in porcine skin explants wells formed micro-colonies at 24 h, developed mushroom-like structure at 48 h, and at 72 h mushroom-like structure disappeared, remaining a thin bacterial lawn. RNA-seq data analysis revealed that the expression levels of genes involved in the type II hxc secretion system were significantly higher in biofilms than in planktonic cells, especially the expression of lapA encoding alkaline phosphatase. However, the expression levels of genes associated with denitrification pathway were markedly decreased in biofilms, especially the transcription of nirS encoding nitrite reductase to produce nitric oxide (NO). Therefore, their expressions and products were further detected using RT-qPCR and biochemical assays, respectively. The results found that the expression of lapA and alkaline phosphatase activity were induced, but the expression of nirS and intracellular NO were reduced at the whole biofilms cycle. The study indicates that LapA and NO would play an important role for P. aeruginosa biofilm formation in chronic wound infections. LapA would serve as potential target to monitor chronic wound infections by P. aeruginosa biofilms. Inducing NO would be used to treat chronic wound infections due to P. aeruginosa biofilms.


2021 ◽  
Author(s):  
Xiaojuan Tan ◽  
Xi Cheng ◽  
Mei Hu ◽  
Yifan Zhang ◽  
Aiqun Jia ◽  
...  

Abstract Bacterial biofilms formation is one of the major reasons for treatment failure in chronic wound infections. Therefore, diagnostic biomarkers remain the best option for prevention and treatment of chronic wound infections by biofilms. Herein, Pseudomonas aeruginosa PAO1 was used to mimic biofilm development in porcine skin explants wells as ex vivo wound model. The microscopic imaging showed that PAO1 in porcine skin explants wells formed micro-colonies at 24 h, developed mushroom-like structure at 48 h, and at 72 h mushroom-like structure disappeared, remaining a thin bacterial lawn. RNA-seq data analysis revealed that the expression levels of genes involved in the type II hxc secretion system were significantly higher in biofilms than in planktonic cells, especially the expression of lapA encoding alkaline phosphatase. However, the expression levels of genes associated with denitrification pathway were markedly decreased in biofilms, especially the transcription of nirS encoding nitrite reductase to produce nitric oxide (NO). Therefore, their expressions and products were further detected using RT-qPCR and biochemical assays, respectively. The results found that the expression of lapA and alkaline phosphatase activity were induced, but the expression of nirS and intracellular NO were reduced at the whole biofilms cycle. The study indicates that LapA and NO would play an important role for P. aeruginosa biofilm formation in chronic wound infections. LapA would serve as potential target to monitor chronic wound infections by P. aeruginosa biofilms. Inducing NO would be used to treat chronic wound infections due to P. aeruginosa biofilms.


2021 ◽  
pp. 113831
Author(s):  
Vincent Gauthier ◽  
Alice Lemarquand ◽  
Emmanuel Caplain ◽  
Nicolas Wilkie-Chancellier ◽  
Stéphane Serfaty

2021 ◽  
Vol 12 ◽  
Author(s):  
Mareike Rentzsch ◽  
Robert Wawrzinek ◽  
Claudia Zelle-Rieser ◽  
Helen Strandt ◽  
Lydia Bellmann ◽  
...  

Immune modulating therapies and vaccines are in high demand, not least to the recent global spread of SARS-CoV2. To achieve efficient activation of the immune system, professional antigen presenting cells have proven to be key coordinators of such responses. Especially targeted approaches, actively directing antigens to specialized dendritic cells, promise to be more effective and accompanied by reduced payload due to less off-target effects. Although antibody and glycan-based targeting of receptors on dendritic cells have been employed, these are often expensive and time-consuming to manufacture or lack sufficient specificity. Thus, we applied a small-molecule ligand that specifically binds Langerin, a hallmark receptor on Langerhans cells, conjugated to a model protein antigen. Via microneedle injection, this construct was intradermally administered into intact human skin explants, selectively loading Langerhans cells in the epidermis. The ligand-mediated cellular uptake outpaces protein degradation resulting in intact antigen delivery. Due to the pivotal role of Langerhans cells in induction of immune responses, this approach of antigen-targeting of tissue-resident immune cells offers a novel way to deliver highly effective vaccines with minimally invasive administration.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lisa DiNatale ◽  
Jolanta Idkowiak-Baldys ◽  
Young Zhuang ◽  
Anthony Gonzalez ◽  
Thomas J. Stephens ◽  
...  

Topical antiaging products are often a first-line intervention to counter visible signs of facial photoaging, aiming for sustained cosmetic improvement. However, prolonged application of a single active topical compound was observed clinically to lead to a plateau effect in improving facial photoaging. In view of this, we set out to reduce this effect systematically using a multi-tiered approach with laboratory evidence and clinical trials. The objective of the study was to evaluate the effects of active topical ingredients applied either alone, in combination, or in a rotational manner on modulation of facial photoaging. The study methodology included in vitro, organotypic, and ex vivo skin explants; in vivo biopsy study; as well as clinical trials. We demonstrate for the first time that a pair of known antiaging ingredients applied rotationally, on human dermal fibroblasts, maximized pro-collagen I production. Indeed, rotational treatment with retinol and phytol/glycolic acid (PGA) resulted in better efficacy than application of each active ingredient alone as shown by explants and in vivo biopsy study, with penetration of active ingredients confirmed by Raman spectroscopy. Furthermore, two split-face, randomized, double-blinded clinical trials were conducted, one for 12 months to compare treated vs. untreated and the other for 6 months followed by a 2-month regression to compare treated vs. commercially marketed products. In both studies, rotational regimen showed superior results to its matching comparison as assessed by clinical grading and image analysis of crow's feet wrinkles. In conclusion, rotational regimen using retinol and PGA is effective in treating facial photoaging signs with long-lasting benefits.


2021 ◽  
Author(s):  
Mami Yokota ◽  
Yoshiyuki Kamiya ◽  
Tamie Suzuki ◽  
Shinsuke Ishikawa ◽  
Akira Takeda ◽  
...  

Abstract Trehangelins (THG) are newly identified trehalose compounds derived from broth cultures of an endophytic actinomycete, Polymorphospora rubra. THG are known to suppress Cellular Communication Network factor 1 (CCN1), which regulates collagen homeostasis in the dermis. Although the physical properties of THG suggest a high penetration of the stratum corneum, the effect of THG on the epidermis has not been reported. Here we describe a possible mechanism involved in skin aging focusing on the effect of THG on epidermal CCN1. This study shows that: 1) THG suppress epidermal CCN1 expression by inhibiting the translocation of Yes-Associated Protein (YAP) to nuclei. 2) Epidermal CCN1, localized at the basement membrane, regulates the balance between the growth and differentiation of keratinocytes. 3) Keratinocytes secrete more CCN1 than fibroblasts, which leads to disruption of the basement membrane and extracellular matrix components. 4) The secretion of CCN1 from keratinocytes is increased by ultraviolet B exposure, especially in aged keratinocytes, and deteriorates the elastic fiber structures in the underlying dermis. 5) Topical application of THG ameliorates the structure of the basement membrane in ex vivo human skin explants. Taken together, THG might be a promising treatment for aged skin by suppressing the aberrant YAP-CCN1 axis.


2021 ◽  
pp. 1-12
Author(s):  
Enrica Cappellozza ◽  
Serena Zanzoni ◽  
Manuela Malatesta ◽  
Laura Calderan

Abstract


Cosmetics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 53
Author(s):  
Véronique Francois-Newton ◽  
Andrew Brown ◽  
Philippe Andres ◽  
Madiiha Bibi Mandary ◽  
Carli Weyers ◽  
...  

Distilled from the heartwood of Santalum album, Indian sandalwood oil is an essential oil that historically has been used as a natural active ingredient in cosmetics to condition and brighten the skin. It has been documented to exhibit antioxidant, anti-inflammatory, and anti-proliferative activities. Here, we investigated the protective and anti-aging effects of Indian sandalwood oil in scavenging reactive oxygen species (ROS) in HaCaT cells and in human skin explants after exposure to oxidative stress. Using a probe DCFH-DA, the antioxidant capacity of Indian sandalwood oil was monitored following exposure to blue light at 412 nm and 450 nm or cigarette smoke. The anti-aging effect of sandalwood oil was also explored in human skin explants via the assessment of collagenase level (MMP-1). We reported that Indian sandalwood oil possessed antioxidant potential that can scavenge the ROS generated by a free radical generating compound (AAPH). Subsequent exposure to environmental stressors revealed that Indian sandalwood oil possessed superior antioxidant activity in comparison to vitamin E (alpha tocopherol). Using human skin explants, this study demonstrated that Indian sandalwood oil can also inhibit the pollutant-induced level of MMP-1. The findings indicated that Indian sandalwood oil can potentially serve as a protective and anti-aging active ingredient in cosmetics and dermatology against environmental stressors.


Sign in / Sign up

Export Citation Format

Share Document