The Development and Assessment of a Course for Enhancing the 3-D Spatial Visualization Skills of First Year Engineering Students

2000 ◽  
Vol 89 (3) ◽  
pp. 301-307 ◽  
Author(s):  
Sheryl A. Sorby ◽  
Beverly J. Baartmans
Author(s):  
Sanchit Ingale ◽  
Anirudh Srinivasan ◽  
Diana Bairaktarova

Spatial visualization is the ability of an individual to imagine an object mentally and understand its spatial orientation. There have been multiple works proving that spatial visualization skills can be improved with an appropriate training. Such training warrant a critical place in the undergraduate engineering curricula in many engineering schools as spatial skills are considered vital for students’ success in the technical and design fields [1–4]. Enhanced spatial skills help not only professionals in the engineering field but also everyone in the 21st century environment. Drawing sectional views requires mental manipulation and visual thinking. To enhance students spatial reasoning, one of the authors of this study, conducted a class in spatial visualization. The course-learning goal aimed at improving first-year engineering students’ spatial reasoning through instruction on freehand drawings of sectional view. During the semester, two teaching assistants had to grade more than 500 assignments that consisted of sectional views of mechanical objects. This was a tedious and a time consuming task. Motivated by this experience, this paper proposes a software aiming at automating grading of students’ sectional view drawings. The proposed software will also give live feedback to students while they are working on the drawings. This interactive tool aims to 1) improve the learning experience of first year students, with limited CAD knowledge, and 2) introduce a pedagogical tool that can enhance spatial visualization training.


2015 ◽  
Author(s):  
S. Patrick Walton ◽  
Mark Urban-Lurain ◽  
Amanda Idema ◽  
Timothy Hinds ◽  
Daina Briedis

Author(s):  
Diego Vergara ◽  
Manuel Pablo Rubio ◽  
Miguel Lorenzo ◽  
Rocío Rodríguez

<p>Dada la dificultad de visión espacial habitual en muchos de los estudiantes vinculados a titulaciones de carácter técnico, en este artículo se presenta un recurso digital interactivo que ayuda a reforzar la comprensión espacial de los vectores en el espacio (que suele ser una de las dificultades más comunes entre los alumnos de primer curso de cualquier ingeniería). Esta herramienta permite al alumnado obtener ayuda para visualizar y analizar en tiempo real los cambios que se producen al variar las coordenadas de un vector: (i) el módulo del vector, (ii) su vector unitario y (iii) los cosenos directores. Esta plataforma virtual interactiva (PVI) pretende solventar, por una parte, la visualización espacial de los cosenos directores de un vector situado en cualquier octante y, por otra parte, la interpretación espacial de la posición de un vector cualquiera. Mediante el uso de esta PVI, el alumno realizará además un autoaprendizaje de tipo productivo, lo que favorece el hábito de pensar, razonar y relacionar o explicar la información.</p><p> Abstract</p><p> Taking into account the common difficulties regarding spatial visualization appearing in students enrolled in technical studies, this paper presents an interactive digital resource that helps to enhance the spatial comprehension of vectors in 3D space (this one being one of the most common difficulty detected in first-year engineering students learning). This tool allows students obtaining assistance to visualize and to analyze in real time the changes produced in a vector when its coordinates are varied, namely: (i) vector modulus, (ii) the unitary vector, (iii) the director cosines. On one hand, the developed interactive virtual platform (IVP) tries to solve the spatial visualization of the director cosines of a vector placed at any octant and, on the other hand, the spatial interpretation of the position of a given vector. By using this IVP, students will perform a productive self-learning, enhancing the habit of the key habit of thinking, reasoning and relating or explaining information.</p>


Author(s):  
Janice E Miller-Young

The premise of student-centered teaching is to respond to the ways in which students engage with the context and content of their learning, and therefore the purpose of this study was to find out how students visualize three-dimensional statics problems from two-dimensional diagrams early in a first-year engineering course. Think-alouds were conducted where students were asked to describe magnitudes and directions of various forces acting in three-dimensional spaces. Three key themes emerged: students have more trouble visualizing points behind, or vectors pointing into, the plane of the page; students may not use contextual clues to aid in their visualization; and students rely on equations to answer problems even when not necessary or even possible to do so. These findings are important to instructors in disciplines where spatial visualization is important because as they are already “experts” in this skill, they may underestimate the difficulty students initially face in approaching these problems. The value of using think-alouds to reveal student thinking as they struggle with concepts is also discussed. La prémisse de l’enseignement centré sur l’apprenant est de réagir à la manière dont les étudiants s’intéressent réellement au contexte et au contenu de leur apprentissage. En conséquence, le but de cette étude était de découvrir comment les étudiants visualisent les problèmes statiques tridimensionnels à partir de diagrammes bi-dimensionnels, dans un cours de génie de première année. Des exercices de réflexion à haute voix ont été effectués, au cours desquels on a demandé aux étudiants de décrire les magnitudes et les directions de diverses forces qui agissaient dans des espaces tridimensionnels. Trois thèmes clés sont apparus : les étudiants ont davantage de difficulté à visualiser les points qui se trouvent derrière le niveau de la page ou les vecteurs tournés dans la direction de la page; les étudiants n’utilisent pas toujours les indices contextuels dans leur visualisation; et enfin, les étudiants s’appuient sur les équations pour répondre aux problèmes, même quand ce n’est pas nécessaire ou quand c’est impossible à faire. Ces conclusions présentent un grand intérêt pour les enseignants de disciplines où la visualisation spatiale est importante car, puisqu’eux-mêmes sont déjà « experts » dans cette compétence, ils risquent de mésestimer la difficulté à laquelle les étudiants sont confrontés, au début, quand ils essaient de résoudre ces problèmes. L’article discute également de la valeur de l’utilisation d’exercices de réflexion à haute voix pour révéler ce que pensent les étudiants quand ils sont aux prises avec un problème.


Author(s):  
Robert V. Fleisig ◽  
Anna Robertson ◽  
Allan D. Spence

Spatial visualization skills are the aptitudes needed to mentally process three-dimensional images of objects. These skills are important to successful design engineers of all disciplines and are closely correlated to student performance in undergraduate engineering programmes. This paper reports on the metrics, curriculum, and teaching methods that have been implemented at McMaster University to improve the visualization skills of first year engineering students and modernize the course content of the mandatory first year engineering design and graphics course. Strong improvements in visualization test scores has been observed from the first week through to the last week of the course. To automate grading, the visualization tests have been implemented on WebCT. The WebCT-based visualization tests and results will be shared with other CDEN members upon request.


2020 ◽  
Author(s):  
Deborah Grzybowski ◽  
Olga Stavridis ◽  
Lisa Barclay ◽  
Lisa Abrams ◽  
Sheryl Sorby ◽  
...  

Author(s):  
Jeremiah Vanderlaan ◽  
Josh Richert ◽  
James Morrison ◽  
Thomas Doyle

We are a group of engineering students, in our first year of undergraduate study. We have been selected from one thousand first year students and have competed and won the PACE competition. All engineers share a common general first year, but we have been accepted into Civil and Mechanical engineering. This project was assigned as the final project in the Design and Graphics course. The project we are tasked with, called the Cornerstone Design Project, is to first dissect a product, discover how it works, dimension each part and create a fully assembled model using CAD software (Solid Edge V20 in our case). As part of discovering how it works we must benchmark it so the device can be compared with competing products. The goal of the project is to develop a full understanding of part modeling and assembly in Solid Edge, learn proper measurement techniques, and learn the process of reverse engineering and product dissection. All of these tasks were stepping stones to help us fully understand how the device, and all its components, work.


Author(s):  
Umar Iqbal ◽  
Deena Salem ◽  
David Strong

The objective of this paper is to document the experience of developing and implementing a second-year course in an engineering professional spine that was developed in a first-tier research university and relies on project-based core courses. The main objective of this spine is to develop the students’ cognitive and employability skills that will allow them to stand out from the crowd of other engineering graduates.The spine was developed and delivered for the first time in the academic year 2010-2011 for first-year general engineering students. In the year 2011-2012, those students joined different programs, and accordingly the second-year course was tailored to align with the different programs’ learning outcomes. This paper discusses the development and implementation of the course in the Electrical and Computer Engineering (ECE) department.


Sign in / Sign up

Export Citation Format

Share Document