Hierarchical classification of microorganisms based on high-dimensional phenotypic data

2017 ◽  
Vol 11 (3) ◽  
pp. e201700047 ◽  
Author(s):  
Valeria Tafintseva ◽  
Evelyne Vigneau ◽  
Volha Shapaval ◽  
Véronique Cariou ◽  
El Mostafa Qannari ◽  
...  
2020 ◽  
Vol 10 (5) ◽  
pp. 1797 ◽  
Author(s):  
Mera Kartika Delimayanti ◽  
Bedy Purnama ◽  
Ngoc Giang Nguyen ◽  
Mohammad Reza Faisal ◽  
Kunti Robiatul Mahmudah ◽  
...  

Manual classification of sleep stage is a time-consuming but necessary step in the diagnosis and treatment of sleep disorders, and its automation has been an area of active study. The previous works have shown that low dimensional fast Fourier transform (FFT) features and many machine learning algorithms have been applied. In this paper, we demonstrate utilization of features extracted from EEG signals via FFT to improve the performance of automated sleep stage classification through machine learning methods. Unlike previous works using FFT, we incorporated thousands of FFT features in order to classify the sleep stages into 2–6 classes. Using the expanded version of Sleep-EDF dataset with 61 recordings, our method outperformed other state-of-the art methods. This result indicates that high dimensional FFT features in combination with a simple feature selection is effective for the improvement of automated sleep stage classification.


Author(s):  
VLADIMIR NIKULIN ◽  
TIAN-HSIANG HUANG ◽  
GEOFFREY J. MCLACHLAN

The method presented in this paper is novel as a natural combination of two mutually dependent steps. Feature selection is a key element (first step) in our classification system, which was employed during the 2010 International RSCTC data mining (bioinformatics) Challenge. The second step may be implemented using any suitable classifier such as linear regression, support vector machine or neural networks. We conducted leave-one-out (LOO) experiments with several feature selection techniques and classifiers. Based on the LOO evaluations, we decided to use feature selection with the separation type Wilcoxon-based criterion for all final submissions. The method presented in this paper was tested successfully during the RSCTC data mining Challenge, where we achieved the top score in the Basic track.


Sensors ◽  
2014 ◽  
Vol 14 (6) ◽  
pp. 11204-11224 ◽  
Author(s):  
Atena Fekr ◽  
Majid Janidarmian ◽  
Katarzyna Radecka ◽  
Zeljko Zilic

2008 ◽  
Vol 1 (1) ◽  
pp. 67 ◽  
Author(s):  
Matthew N Davies ◽  
Andrew Secker ◽  
Mark Halling-Brown ◽  
David S Moss ◽  
Alex A Freitas ◽  
...  

2012 ◽  
Vol 13 (1) ◽  
Author(s):  
Andrew F Neuwald ◽  
Christopher J Lanczycki ◽  
Aron Marchler-Bauer

Sign in / Sign up

Export Citation Format

Share Document