Longtime driving induced cerebral hemodynamic elevation and behavior degradation as assessed by functional near-infrared spectroscopy and a voluntary attention test

2018 ◽  
Vol 11 (12) ◽  
pp. e201800160 ◽  
Author(s):  
Ting Li ◽  
Yu Lin ◽  
Yuan Gao ◽  
Fulin Zhong
2019 ◽  
Author(s):  
Shannon Burns ◽  
Matthew D. Lieberman

Social and affective neuroscience studies the neurophysiological underpinnings of psychological experience and behavior as it relates to the world around us. Yet, most neuroimaging methods require the removal of participants from their rich environment and the restriction of meaningful interaction with stimuli. In this Tools of the Trade article, we explain functional near infrared spectroscopy (fNIRS) as a neuroimaging method that can address these concerns. First, we provide an overview of how fNIRS works and how it compares to other neuroimaging methods common in social and affective neuroscience. Next, we describe fNIRS research that highlights its usefulness to the field – when rich stimuli engagement or environment embedding is needed, studies of social interaction, and examples of how it can help the field become more diverse and generalizable across participant populations. Lastly, this article describes how to use fNIRS for neuroimaging research with points of advice that are particularly relevant to social and affective neuroscience studies.


2020 ◽  
Vol 4 (1) ◽  
pp. 47-52
Author(s):  
Fairuz Mohd Nasir ◽  
Hiroshi Watabe

Functional near-infrared spectroscopy (fNIRS) is an optical imaging tool to study brain activities. Moreover, many researchers combined fNIRS with other modalities to gain a better understanding of the brain. This paper provides an overview of the combination of fNIRS with other imaging modalities in the detection and measurement of the cerebral hemodynamic. Cerebral haemodynamic such as the cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral blood oxygenation (CBO) are the important parameters in many neuroimaging studies. Cerebral hemodynamic had been studied by various medical imaging modalities.  Initially, Xenon enhanced Computed Tomography (Xenon CT), Computed Tomography (CT) perfusion; Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET) are used to measure the cerebral hemodynamic. Recently, fNIRS is used to optically observe the changes in cerebral haemodynamic during brain activities and the combination of fNIRS with other modalities also become an interest to study the relations within brain activities and the cerebral hemodynamic. Therefore, this paper provides an overview of existing multimodal fNIRS in detection of cerebral haemodynamic changes and provides an important insight on how multimodal fNIRS aid in advancing modern investigations of human brain function.       Keywords: multimodal imaging, fNIRS-fMRI, fNIRS-PET, fNIRS-EEG


2021 ◽  
Vol 14 ◽  
Author(s):  
Kunqiang Qing ◽  
Ruisen Huang ◽  
Keum-Shik Hong

This study decodes consumers' preference levels using a convolutional neural network (CNN) in neuromarketing. The classification accuracy in neuromarketing is a critical factor in evaluating the intentions of the consumers. Functional near-infrared spectroscopy (fNIRS) is utilized as a neuroimaging modality to measure the cerebral hemodynamic responses. In this study, a specific decoding structure, called CNN-based fNIRS-data analysis, was designed to achieve a high classification accuracy. Compared to other methods, the automated characteristics, constant training of the dataset, and learning efficiency of the proposed method are the main advantages. The experimental procedure required eight healthy participants (four female and four male) to view commercial advertisement videos of different durations (15, 30, and 60 s). The cerebral hemodynamic responses of the participants were measured. To compare the preference classification performances, CNN was utilized to extract the most common features, including the mean, peak, variance, kurtosis, and skewness. Considering three video durations, the average classification accuracies of 15, 30, and 60 s videos were 84.3, 87.9, and 86.4%, respectively. Among them, the classification accuracy of 87.9% for 30 s videos was the highest. The average classification accuracies of three preferences in females and males were 86.2 and 86.3%, respectively, showing no difference in each group. By comparing the classification performances in three different combinations (like vs. so-so, like vs. dislike, and so-so vs. dislike) between two groups, male participants were observed to have targeted preferences for commercial advertising, and the classification performance 88.4% between “like” vs. “dislike” out of three categories was the highest. Finally, pairwise classification performance are shown as follows: For female, 86.1% (like vs. so-so), 87.4% (like vs. dislike), 85.2% (so-so vs. dislike), and for male 85.7, 88.4, 85.1%, respectively.


2021 ◽  
Vol 34 (2) ◽  
pp. 154-166
Author(s):  
Keerthana Deepti Karunakaran ◽  
Katherine Ji ◽  
Donna Y. Chen ◽  
Nancy D. Chiaravalloti ◽  
Haijing Niu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Y. Q. Lee ◽  
Gabrielle W. N. Tay ◽  
Cyrus S. H. Ho

Introduction: Suicide is a pressing psychiatric concern worldwide with no established biomarker. While there is some evidence of the clinical utility of functional near-infrared spectroscopy (fNIRS) in assessing and predicting suicidality, no systematic review of such evidence has been conducted to date. Therefore, this review aimed to systematically review and gather evidence from existing studies that used fNIRS signals to assess suicidality and its associated changes in the brain, and those that examined how such signals correlated with suicide symptomatology.Methods: PubMed, EMBASE, and Cochrane Library databases were used in a systematic literature search for English-language articles published between 2000 and December 19, 2020 that focused on the utility of fNIRS for (i) assessing suicidality and its associated changes in the brain, and (ii) correlating with suicide symptomatology. Studies were included if they utilised fNIRS to evaluate variations in fNIRS-measured cerebral hemodynamic responses in patients with different mental disorders (e.g., major depressive disorder, schizophrenia), as well as in healthy controls, of any age group. Quality of evidence was assessed using the Newcastle-Ottawa quality assessment scale.Results: A total of 7 cross-sectional studies were included in this review, all of which had acceptable quality. Across all studies, fNIRS demonstrated reduced cerebral hemodynamic changes in suicidal individuals when compared to non-suicidal individuals. One study also demonstrated the potential of fNIRS signals in correlating with the severity of suicidality.Conclusions: This review provides a comprehensive, updated review of evidence supporting the clinical utility of fNIRS in the assessment and prediction of suicidality. Further studies involving larger sample sizes, standardised methodology, and longitudinal follow-ups are needed.


Sign in / Sign up

Export Citation Format

Share Document