Implantable self‐aligning fiber‐optic optomechanical devices for in vivo intraocular pressure‐sensing in artificial cornea

2020 ◽  
Vol 13 (7) ◽  
Author(s):  
Pui‐Chuen Hui ◽  
Katia Shtyrkova ◽  
Chengxin Zhou ◽  
Xiaoniao Chen ◽  
James Chodosh ◽  
...  
2020 ◽  
Vol 13 (7) ◽  
Author(s):  
Pui‐Chuen Hui ◽  
Katia Shtyrkova ◽  
Chengxin Zhou ◽  
Xiaoniao Chen ◽  
James Chodosh ◽  
...  

1993 ◽  
Vol 47 (5) ◽  
pp. 590-597 ◽  
Author(s):  
Stephane Mottin ◽  
Canh Tran-Minh ◽  
Pierre Laporte ◽  
Raymond Cespuglio ◽  
Michel Jouvet

At pH 7 and with the excitation at wavelengths above 315 nm, previously unreported fluorescence of 5-HT (5-hydroxytryptamine) is observed. Two fluorescence bands were observed for 5-HT; the first emits at around 390 nm with an associated lifetime near 1 ns, and the other (well known) emits at 340 nm with an associated lifetime of 2.7 ns. With both static and time-resolved fluorescences, the spectral and temporal effects of the excitation wavelength were studied between 285 and 340 nm. With these basic spectroscopic properties as a starting point, a fiber-optic chemical sensor (FOCS) was developed in order to measure 5-HT with a single-fiber configuration, nitrogen laser excitation, and fast digitizing techniques. Temporal effects including fluorescence of the optical fiber were studied and compared with measurements both directly in cuvette and through the fiber-optic sensor. Less than thirty seconds are required for each measurement. A detection limit of 5-HT is reached in the range of 5 μM. Our system, with an improved sensitivity, could therefore be a possible and convenient “tool” for in vivo determination of 5-HT.


Theranostics ◽  
2017 ◽  
Vol 7 (14) ◽  
pp. 3517-3526 ◽  
Author(s):  
Kan Lin ◽  
Wei Zheng ◽  
Chwee Ming Lim ◽  
Zhiwei Huang

2015 ◽  
Vol 24 (6) ◽  
pp. 1896-1905 ◽  
Author(s):  
Kyeong-Sik Shin ◽  
Cheol-In Jang ◽  
Mi Jeung Kim ◽  
Kwang-Seok Yun ◽  
Ki Ho Park ◽  
...  

2018 ◽  
Vol 12 (1) ◽  
pp. 314-321
Author(s):  
Cristina Sánchez-Barahona ◽  
Gema Bolívar ◽  
Dimitrios G. Mikropoulos ◽  
Anastasios G. Konstas ◽  
Miguel A. Teus

Objective: To evaluate in an in vivo rabbit model, the effect of topical timolol maleate therapy on the central corneal thickness response to acute intraocular pressure increases. Method: In this prospective and interventional controlled study, the central corneal thickness and intraocular pressure were measured in vivo in 12 rabbit eyes treated with topical timolol maleate for 1 month and in 12 controls at baseline, and after the intraocular pressure (measured by direct cannulation of the anterior chamber) was increased to 15 and 30 mmHg using a forced saline infusion into the anterior chamber. Results: There were no significant differences in the basal central corneal thickness values (control group, 373.2±12.9 µm; study group, 377.5±19.2 µm, p=0.5) or the central corneal thickness values when the intraocular pressure was increased to 15 mmHg (control group, 335.2±14.3 µm; study group, 330.0±32.1 µm, p=0.6) and to 30 mmHg (study group, 318.8±25.3 µm; control group, 329.8±21.0 µm, p=0.3). Conclusion: Rabbit corneas treated with topical timolol maleate for 1 month did not show a strain response to acute intraocular pressure increases that differed from control eyes. This is in contrast to a previous finding in which rabbit eyes treated with prostaglandin analogues had a greater decrease in central corneal thickness in response to a sudden intraocular pressure increase compared with untreated corneas.


2008 ◽  
Vol 161 (2) ◽  
pp. 160-166 ◽  
Author(s):  
Jinjun Jiang ◽  
Lei Gao ◽  
Wei Zhong ◽  
Shen Meng ◽  
Ben Yong ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document