In vitro and in vivo assessment of glucose cross‐linked gelatin/zein nanofibrous scaffolds for cranial bone defects regeneration

2020 ◽  
Vol 108 (4) ◽  
pp. 1505-1517
Author(s):  
Lingli Deng ◽  
Yang Li ◽  
Hui Zhang
2020 ◽  
Author(s):  
yuanjia he ◽  
Shuang Lin ◽  
Qiang Ao ◽  
Xiaoning He

Abstract Background: The repair of critical-sized bone defect represents a challenging problem in bone tissue engineering. To address the most important problem in bone defect repair, namely insufficient blood supply, this study aimed to find a method that can promote the formation of vascularized bone tissue.Method The phenotypes of ASCs and EPCs were identified respectively, and ASCs/EPCs were co-cultured in vitro to detect the expression of osteogenic and angiogenic genes. Furthermore, the co-culture system combined with scaffold material was used to repair the critical-sized bone defects of the cranial bone in rats.Results The co-culture of ASCs/EPCs could increase osteogenesis and angiogenesis-related gene expression in vitro. The results of in vivo animal experiments demonstrated that the ASCs/EPCs group could promote bone regeneration and vascularization in the meantime and, then significantly accelerate the repair of critical-sized bone defects.Conclusion It is feasible to replace traditional single seed cells with ASCs/EPCs co-culture system for vascularized bone regeneration. This system could ultimately enable clinicians to better repair the defect of craniofacial bone and avoid donor site morbidity.


2020 ◽  
Author(s):  
yuanjia he ◽  
Shuang Lin ◽  
Qiang Ao ◽  
Xiaoning He

Abstract Background: The repair of critical-sized bone defect represents a challenging problem in bone tissue engineering. To address the most important problem in bone defect repair, namely insufficient blood supply, this study aimed to find a method that can promote the formation of vascularized bone tissue.Method The phenotypes of ASCs and EPCs were identified respectively, and ASCs/EPCs were co-cultured in vitro to detect the expression of osteogenic and angiogenic genes. Furthermore, the co-culture system combined with scaffold material was used to repair the critical-sized bone defects of the cranial bone in rats.Results The co-culture of ASCs/EPCs could increase osteogenesis and angiogenesis-related gene expression in vitro. The results of in vivo animal experiments demonstrated that the ASCs/EPCs group could promote bone regeneration and vascularization in the meantime and, then significantly accelerate the repair of critical-sized bone defects.Conclusion It is feasible to replace traditional single seed cells with ASCs/EPCs co-culture system for vascularized bone regeneration. This system could ultimately enable clinicians to better repair the defect of craniofacial bone and avoid donor site morbidity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sajad Bahrami ◽  
Nafiseh Baheiraei ◽  
Mostafa Shahrezaee

AbstractA variety of bone-related diseases and injures and limitations of traditional regeneration methods require new tissue substitutes. Tissue engineering and regeneration combined with nanomedicine can provide different natural or synthetic and combined scaffolds with bone mimicking properties for implantation in the injured area. In this study, we synthesized collagen (Col) and reduced graphene oxide coated collagen (Col-rGO) scaffolds, and we evaluated their in vitro and in vivo effects on bone tissue repair. Col and Col-rGO scaffolds were synthesized by chemical crosslinking and freeze-drying methods. The surface topography, and the mechanical and chemical properties of scaffolds were characterized, showing three-dimensional (3D) porous scaffolds and successful coating of rGO on Col. The rGO coating enhanced the mechanical strength of Col-rGO scaffolds to a greater extent than Col scaffolds by 2.8 times. Furthermore, Col-rGO scaffolds confirmed that graphene addition induced no cytotoxic effects and enhanced the viability and proliferation of human bone marrow-derived mesenchymal stem cells (hBMSCs) with 3D adherence and expansion. Finally, scaffold implantation into rabbit cranial bone defects for 12 weeks showed increased bone formation, confirmed by Hematoxylin–Eosin (H&E) and alizarin red staining. Overall, the study showed that rGO coating improves Col scaffold properties and could be a promising implant for bone injuries.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Abhishek Kumar ◽  
Minati Choudhury ◽  
Sakshi Dhingra Batra ◽  
Kriti Sikri ◽  
Anushree Gupta

Abstract Objective Endothelin-1 plays an important role in the pathogenesis of severe pulmonary hypertension. The + 139 ‘A’, adenine insertion variant in 5′UTR of edn1 gene has been reported to be associated with increased expression of Endothelin-1 in vitro. The aim of present study was to explore the association of this variant with the circulating levels of Endothelin-1 in vivo using archived DNA and plasma samples from 38 paediatric congenital heart disease (cyanotic and acyanotic) patients with severe pulmonary hypertension. Results The plasma Endothelin-1 levels were highly varied ranging from 1.63 to75.16 pg/ml. The + 139 ‘A’ insertion variant in 5′UTR of edn1 was seen in 8 out of 38 cases with only one acyanotic sample demonstrating homozygosity of inserted ‘A’ allele at + 139 site (4A/4A genotype). The plasma Endothelin-1 levels in children with homozygous variant 3A/3A genotype were comparable in cyanotic and acyanotic groups. Lone 4A/4A acyanotic sample had ET-1 levels similar to the median value of ET-1 associated with 3A/3A genotype and was absent in cyanotic group presumably due to deleterious higher ET-1 levels. The discussed observations, limited by the small sample size, are suggestive of homozygous adenine insertion variant posing a risk in cyanotic babies with Severe Pulmonary Hypertension.


1985 ◽  
Vol 15 (suppl A) ◽  
pp. 201-206 ◽  
Author(s):  
A. U. Gerber ◽  
C. Feller-Segessenmann

2011 ◽  
Vol 13 (12) ◽  
pp. 6821-6835 ◽  
Author(s):  
Stefania Sabella ◽  
Virgilio Brunetti ◽  
Giuseppe Vecchio ◽  
Antonio Galeone ◽  
Gabriele Maiorano ◽  
...  
Keyword(s):  

Author(s):  
Suman Gyanewali ◽  
Prashant Kesharwani ◽  
Afsana ◽  
Farhan Jalees Ahmad ◽  
Ritu Trivedi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document