Osteoblast-Specific Expression of the α2(I) Collagen Promoter in Transgenic Mice: Correlation with the Distribution of TGF-β1

2009 ◽  
Vol 8 (9) ◽  
pp. 1127-1136 ◽  
Author(s):  
Rena N. D'Souza ◽  
Karen Niederreither ◽  
Benoit de Crombrugghe
1992 ◽  
Vol 119 (5) ◽  
pp. 1361-1370 ◽  
Author(s):  
K Niederreither ◽  
R N D'Souza ◽  
B de Crombrugghe

The pattern of expression of the pro alpha 2(I) collagen gene is highly tissue specific in adult mice and shows its strongest expression in bones, tendons, and skin. Transgenic mice were generated harboring promoter fragments of the mouse pro alpha 2(I) collagen gene linked to the Escherichia coli beta-galactosidase or firefly luciferase genes to examine the activity of these promoters during development. A region of the mouse pro alpha 2(I) collagen promoter between -2,000 and +54 exhibited a pattern of beta-galactosidase activity during embryonic development that corresponded to the expression pattern of the endogenous pro alpha 2(I) collagen gene as determined by in situ hybridization. A similar pattern of activity was also observed with much smaller promoter fragments containing either 500 or 350 bp of upstream sequence relative to the start of transcription. Embryonic regions expressing high levels of beta-galactosidase activity included the bulbus arteriosus, valves of the developing heart, sclerotomes, meninges, limb buds, connective tissue fascia between muscle fibers, osteoblasts in newly formed bones, fibroblasts in tendons, periosteum, dermis, and peritoneal membranes. The pattern of beta-galactosidase activity was similar and included within the extracellular immunohistochemical localization pattern of transforming growth factor-beta 1 (TGF-beta 1). The -315(-)-284 region of the pro alpha 2(I) collagen promoter was previously shown to mediate the stimulatory effects of TGF-beta 1 on the pro alpha 2(I) collagen promoter in DNA transfection experiments with cultured fibroblasts. A construct containing this sequence tandemly repeated 5' to a very short alpha 2(I) collagen promoter (-40(-)+54) showed preferential activity in tail and skin of 4-wk-old transgenic mice. Except for low expression of the transgene in bone, this pattern mimics the expression of the endogenous pro alpha 2(I) collagen gene. We propose the hypothesis that the tissue-specific expression of the pro alpha 2(I) collagen gene during embryogenesis is controlled by both TGF-beta 1 and cell-specific transcription factors; one of these could interact directly or indirectly with either the -315(-)-284 or the -40(-)+54 segment.


Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 319-329 ◽  
Author(s):  
S Dziennis ◽  
RA Van Etten ◽  
HL Pahl ◽  
DL Morris ◽  
TL Rothstein ◽  
...  

Abstract CD11b is the alpha chain of the Mac-1 integrin and is preferentially expressed in myeloid cells (neutrophils, monocytes, and macrophages). We have previously shown that the CD11b promoter directs cell-type- specific expression in myeloid lines using transient transfection assays. To confirm that these promoter sequences contain the proper regulatory elements for correct myeloid expression of CD11b in vivo, we have used the -1.7-kb human CD11b promoter to direct reporter gene expression in transgenic mice. Stable founder lines were generated with two different reporter genes, a Thy 1.1 surface marker and the Escherichia coli lacZ (beta-galactosidase) gene. Analysis of founders generated with each reporter demonstrated that the CD11b promoter was capable of driving high levels of transgene expression in murine macrophages for the lifetime of the animals. Similar to the endogenous gene, transgene expression was preferentially found in mature monocytes, macrophages, and neutrophils and not in myeloid precursors. These experiments indicate that the -1.7 CD11b promoter contains the regulatory elements sufficient for high-level macrophage expression. This promoter should be useful for targeting heterologous gene expression to mature myeloid cells.


1992 ◽  
Vol 20 (9) ◽  
pp. 2249-2255 ◽  
Author(s):  
Thomas R. Mikkelsen ◽  
Jakob Brandt ◽  
H.Jakob Larsen ◽  
Birte B. Larsen ◽  
Knud Poulsen ◽  
...  

2005 ◽  
Vol 19 (9) ◽  
pp. 2320-2334 ◽  
Author(s):  
Amena Archer ◽  
Dominique Sauvaget ◽  
Valérie Chauffeton ◽  
Pierre-Etienne Bouchet ◽  
Jean Chambaz ◽  
...  

Abstract In the small intestine, the expression of the apolipoprotein (apo) C-III and A-IV genes is restricted to the enterocytes of the villi. We have previously shown that, in transgenic mice, specific expression of the human apo C-III requires a hormone-responsive element (HRE) located in the distal region of the human apoA-IV promoter. This HRE binds the hepatic nuclear factors (HNF)-4α and γ. Here, intraduodenal injections in mice and infections of human enterocytic Caco-2/TC7 cells with an adenovirus expressing a dominant-negative form of HNF-4α repress the expression of the apoA-IV gene, demonstrating that HNF-4 controls the apoA-IV gene expression in enterocytes. We show that HNF-4α and γ functionally interact with a second HRE present in the proximal region of the human apoA-IV promoter. New sets of transgenic mice expressing mutated forms of the promoter, combined with the human apo C-III enhancer, demonstrate that, whereas a single HRE is sufficient to reproduce the physiological cephalo-caudal gradient of apoA-IV gene expression, both HREs are required for expression that is restricted to villi. The combination of multiple HREs may specifically recruit regulatory complexes associating HNF-4 and either coactivators in villi or corepressors in crypts.


Sign in / Sign up

Export Citation Format

Share Document