promoter studies
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 0)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Robert Becker ◽  
Silvia Vergarajauregui ◽  
Florian Billing ◽  
Maria Sharkova ◽  
Eleonora Lippolis ◽  
...  

Non-centrosomal microtubule organizing centers (MTOC) are pivotal for the function of multiple cell types, but the processes initiating their formation are unknown. Here, we find that the transcription factor myogenin is required in murine myoblasts for the localization of MTOC proteins to the nuclear envelope. Moreover, myogenin is sufficient in fibroblasts for nuclear envelope MTOC (NE-MTOC) formation and centrosome attenuation. Bioinformatics combined with loss- and gain-of-function experiments identified induction of AKAP6 expression as one central mechanism for myogenin-mediated NE-MTOC formation. Promoter studies indicate that myogenin preferentially induces the transcription of muscle- and NE-MTOC-specific isoforms of Akap6 and Syne1, which encodes nesprin-1α, the NE-MTOC anchor protein in muscle cells. Overexpression of AKAP6β and nesprin-1α was sufficient to recruit endogenous MTOC proteins to the nuclear envelope of myoblasts in the absence of myogenin. Taken together, our results illuminate how mammals transcriptionally control the switch from a centrosomal MTOC to an NE-MTOC and identify AKAP6 as a novel NE-MTOC component in muscle cells.


2021 ◽  
Author(s):  
Caroline Ines Skoppek ◽  
Wilko Punt ◽  
Marleen Heinrichs ◽  
Frank Ordon ◽  
Gwendolin Wehner ◽  
...  

High-yielding and stress resistant crops are essential to ensure future food supply. Barley is an important crop to feed livestock and to produce malt, but the annual yield is threatened by pathogen infections. Pathogens can trigger an altered sugar partitioning in the host plant, that possibly leads to an advantage for the pathogen. Hampering these processes represents a promising strategy to potentially increase resistance. We analyzed the response of the barley monosaccharide transporter HvSTP13 towards biotic stress and its potential use for plant protection. The expression of HvSTP13 increased upon bacterial and fungal PAMP application, suggesting a PAMP-triggered signaling that converged on the transcriptional induction of the gene. Promoter studies indicate a region that is likely targeted by transcription factors downstream of PAMP-triggered immunity pathways. We confirmed that the non-functional HvSTP13GR variant confers resistance against an economically relevant biotrophic rust fungus, in barley. In addition, we established targeted CRISPR/Cas9 cytosine base editing in barley protoplasts to generate alternative HvSTP13 mutants and characterized the sugar transport activity and subcellular localization of the proteins. These mutants represent promising variants for future resistance analysis. Our experimental setup provides basal prerequisites to further decode the role of HvSTP13 in response to biological stress. Moreover, in line with other studies, our experiments indicate that the alteration of sugar partitioning pathways, in a host pathogen interaction, is a promising approach to achieve broad and durable resistance in plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ylenia Vittozzi ◽  
Marcin Nadzieja ◽  
Alessandra Rogato ◽  
Simona Radutoiu ◽  
Vladimir Totev Valkov ◽  
...  

Nitrogen-fixing nodules are new organs formed on legume roots as a result of the beneficial interaction with the soil bacteria, rhizobia. Proteins of the nitrate transporter 1/peptide transporter family (NPF) are largely represented in the subcategory of nodule-induced transporters identified in mature nodules. The role of nitrate as a signal/nutrient regulating nodule functioning has been recently highlighted in the literature, and NPFs may play a central role in both the permissive and inhibitory pathways controlling N2-fixation efficiency. In this study, we present the characterization of the Lotus japonicus LjNPF3.1 gene. LjNPF3.1 is upregulated in mature nodules. Promoter studies show transcriptional activation confined to the cortical region of both roots and nodules. Under symbiotic conditions, Ljnpf3.1-knockout mutant’s display reduced shoot development and anthocyanin accumulation as a result of nutrient deprivation. Altogether, LjNPF3.1 plays a role in maximizing the beneficial outcome of the root nodule symbiosis.


2021 ◽  
Vol 22 (9) ◽  
pp. 4720
Author(s):  
Maria Francesca Santolla ◽  
Marianna Talia ◽  
Marcello Maggiolini

Triple-negative breast cancer (TNBC) is an aggressive breast tumor subtype characterized by poor clinical outcome. In recent years, numerous advancements have been made to better understand the biological landscape of TNBC, though appropriate targets still remain to be determined. In the present study, we have determined that the expression levels of FGF2 and S100A4 are higher in TNBC with respect to non-TNBC patients when analyzing “The Invasive Breast Cancer Cohort of The Cancer Genome Atlas” (TCGA) dataset. In addition, we have found that the gene expression of FGF2 is positively correlated with S100A4 in TNBC samples. Performing quantitative PCR, Western blot, CRISPR/Cas9 genome editing, promoter studies, immunofluorescence analysis, subcellular fractionation studies, and ChIP assays, we have also demonstrated that FGF2 induces in TNBC cells the upregulation and secretion of S100A4 via FGFR1, along with the ERK1/2–AKT–c-Rel transduction signaling. Using conditioned medium from TNBC cells stimulated with FGF2, we have also ascertained that the paracrine activation of the S100A4/RAGE pathway triggers angiogenic effects in vascular endothelial cells (HUVECs) and promotes the migration of cancer-associated fibroblasts (CAFs). Collectively, our data provide novel insights into the action of the FGF2/FGFR1 axis through S100A4 toward stimulatory effects elicited in TNBC cells.


2020 ◽  
Author(s):  
Robert Becker ◽  
Silvia Vergarajauregui ◽  
Florian Billing ◽  
Maria Sharkova ◽  
Eleonora Lippolis ◽  
...  

AbstractNon-centrosomal microtubule organizing centers (ncMTOC) are pivotal for the function of multiple cell types, but the processes initiating their formation are unknown. Here, we find that the transcription factor myogenin is required in myoblasts for recruiting centrosomal proteins. Moreover, myogenin is sufficient in fibroblasts for ncMTOC formation and centrosome attenuation. Bioinformatics combined with loss- and gain-of-function experiments identified induction of AKAP6 expression as one central mechanism for myogenin-mediated ncMTOC formation. Promoter studies indicate that myogenin preferentially induces the transcription of muscle- and ncMTOC-specific isoforms of Akap6 and Syne1, which encodes nesprin-1α, the ncMTOC anchor protein in muscle cells. Overexpression of AKAP6β and nesprin-1α was sufficient to recruit endogenous centrosomal proteins to the nuclear envelope of myoblasts in the absence of myogenin. Taken together, our results illuminate how mammals transcriptionally control the switch from a centrosomal MTOC to an ncMTOC and identify AKAP6 as a novel ncMTOC component in muscle cells.


2020 ◽  
Vol 86 (13) ◽  
Author(s):  
Susan Mosquito ◽  
Xianfa Meng ◽  
Giulia Devescovi ◽  
Iris Bertani ◽  
Alexander M. Geller ◽  
...  

ABSTRACT Endophytes are microorganisms that live inside plants and are often beneficial for the host. Kosakonia is a novel bacterial genus that includes several species that are diazotrophic and plant associated. This study revealed two quorum sensing-related LuxR solos, designated LoxR and PsrR, in the plant endophyte Kosakonia sp. strain KO348. LoxR modeling and biochemical studies demonstrated that LoxR binds N-acyl homoserine lactones (AHLs) in a promiscuous way. PsrR, on the other hand, belongs to the subfamily of plant-associated-bacterium (PAB) LuxR solos that respond to plant compounds. Target promoter studies as well as modeling and phylogenetic comparisons suggest that PAB LuxR solos are likely to respond to different plant compounds. Finally, LoxR is involved in the regulation of T6SS and PsrR plays a role in root endosphere colonization. IMPORTANCE Cell-cell signaling in bacteria allows a synchronized and coordinated behavior of a microbial community. LuxR solos represent a subfamily of proteins in proteobacteria which most commonly detect and respond to signals produced exogenously by other microbes or eukaryotic hosts. Here, we report that a plant-beneficial bacterial endophyte belonging to the novel genus of Kosakonia possesses two LuxR solos; one is involved in the detection of exogenous N-acyl homoserine lactone quorum sensing signals and the other in detecting a compound(s) produced by the host plant. These two Kosakonia LuxR solos are therefore most likely involved in interspecies and interkingdom signaling.


2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 487-488
Author(s):  
U. Geldermann ◽  
G. Langen ◽  
K.-H. Kogel

Chemical resistance inducers like BTH (S-methyl benzo (1,2,3)-thiadiazole-7-carbothiate) and DCINA (2,6-dichloro isonicotinic acid) activate resistance in barley against powdery mildew (Blumeria graminis f.sp. hordei). Nine BTH induced genes (Bci, barley chemically induced) have been identified in barley (BESSER et al. 2000) which are not responsive to pathogens in contrast to PR-proteins. From two Bci-genes (Bci3: similar to vsp, Bci4: Ca<sup>2+</sup>-binding EF-hand protein), the promoters were isolated. In transient transformation assays using promoter::GFP and promoter::GUS-constructs the functionality of these chemically induced promoters were studied. To identify the minimal promoter and regions with regulatory elements 5’-deletion constructs were used. Additionally, gel mobility shift assays were performed.


2017 ◽  
Vol 130 (2) ◽  
pp. 345-356 ◽  
Author(s):  
Yehia A. Khidr ◽  
Henryk Flachowsky ◽  
Christian Haselmair-Gosch ◽  
Jana Thill ◽  
Silvija Miosic ◽  
...  

Microbiology ◽  
2014 ◽  
Vol 160 (12) ◽  
pp. 2807-2819 ◽  
Author(s):  
Friederike Klemke ◽  
Gabriele Beyer ◽  
Linda Sawade ◽  
Ali Saitov ◽  
Thomas Korte ◽  
...  

The polyphosphate glucokinases can phosphorylate glucose to glucose 6-phosphate using polyphosphate as the substrate. ORF all1371 encodes a putative polyphosphate glucokinase in the filamentous heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Here, ORF all1371 was heterologously expressed in Escherichia coli, and its purified product was characterized. Enzyme activity assays revealed that All1371 is an active polyphosphate glucokinase that can phosphorylate both glucose and mannose in the presence of divalent cations in vitro. Unlike many other polyphosphate glucokinases, for which nucleoside triphosphates (e.g. ATP or GTP) act as phosphoryl group donors, All1371 required polyphosphate to confer its enzymic activity. The enzymic reaction catalysed by All1371 followed classical Michaelis–Menten kinetics, with k cat = 48.2 s−1 at pH 7.5 and 28 °C and K M = 1.76 µM and 0.118 mM for polyphosphate and glucose, respectively. Its reaction mechanism was identified as a particular multi-substrate mechanism called the ‘bi-bi ping-pong mechanism’. Bioinformatic analyses revealed numerous polyphosphate-dependent glucokinases in heterocyst-forming cyanobacteria. Viability of an Anabaena sp. PCC 7120 mutant strain lacking all1371 was impaired under nitrogen-fixing conditions. GFP promoter studies indicate expression of all1371 under combined nitrogen deprivation. All1371 might play a substantial role in Anabaena sp. PCC 7120 under these conditions.


Sign in / Sign up

Export Citation Format

Share Document