reporter genes
Recently Published Documents


TOTAL DOCUMENTS

521
(FIVE YEARS 69)

H-INDEX

49
(FIVE YEARS 6)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Fengyu Zhang ◽  
Yanhong Sun ◽  
Yihao Zhang ◽  
Wenting Shen ◽  
Shujing Wang ◽  
...  

AbstractSynthetic Biology aims to create predictable biological circuits and fully operational biological systems. Although there are methods to create more stable oscillators, such as repressilators, independently controlling the oscillation of reporter genes in terms of their amplitude and period is only on theoretical level. Here, we introduce a new oscillator circuit that can be independently controlled by two inducers in Escherichia coli. Some control components, including σECF11 and NahR, were added to the circuit. By systematically tuning the concentration of the inducers, salicylate and IPTG, the amplitude and period can be modulated independently. Furthermore, we constructed a quantitative model to forecast the regulation results. Under the guidance of the model, the expected oscillation can be regulated by choosing the proper concentration combinations of inducers. In summary, our work achieved independent control of the oscillator circuit, which allows the oscillator to be modularized and used in more complex circuit designs.


2022 ◽  
Author(s):  
Ying-Ling Chen ◽  
Kuei-Yuan Hou ◽  
Min-Ying Lin ◽  
Yu-Chuan Lin ◽  
Hui-Yen Chuang ◽  
...  

Abstract The piggyBac transposon system is known to non-viral integrate exogenous genes to chromosomes of mammalian cells. For reporter gene imaging, this transposon system is believed to efficiently establish xenograft tumor model with low immunogenicity. Because tumor cells usually exhibit genomic instability, it is important to investigate if piggyBac mediated transduction of reporter genes would change tumor characteristics. In this study, reporter gene imaging mediated by the piggyBac transposon system was exploited to track the growth and dissemination of 4T1 triple-negative murine breast cancer cells in vivo, followed by ex vivo analysis of the metastatic cells expressing reporter genes. We demonstrated that several cell properties, including proliferation rate, invasion and migration rate, and mammosphere formation ability of 4T1 cells were not influenced by piggyBac transposon system. Further, we isolated the liver metastatic cells, named 4T1-3R_L cells for further analysis. Compared to parental 4T1 cells, 4T1-3R_L cells exhibited several cancer stem cells (CSC) related characteristics, including significant mammosphere formation ability, resistance to doxorubicin, high tumorigenicity potential in Balb/C mice and expression of CD44 CSC marker. We also found that 4T1-3R_L cells exhibited stronger migrated and invasive abilities, by wound healing assay and in vitro invasion assay, respectively. The cell adhesive ability of 4T1-3R_L cells was also lower than that of 4T1 cells. The microarray assay showed that several epithelial-mesenchymal transition (EMT) promoting markers, including vimentin, N-cadherin, Twist1, and Snail were up-regulated, and anti-EMT marker E-cadherin was down-regulated in 4T1-3R_L cells. Current data suggest that the piggyBac transposon system is a reliable and biocompatible tool to engineer cancer cells for tacking and characterizing tumor development in vivo and in vitro.


2021 ◽  
Vol 9 (12) ◽  
pp. 2474
Author(s):  
Bowen Meng ◽  
Naomi Epp ◽  
Winsen Wijaya ◽  
Jan Mrázek ◽  
Timothy R. Hoover

DNA methylomes of Helicobacter pylori strains are complex due to the large number of DNA methyltransferases (MTases) they possess. H. pylori J99 M.Hpy99III is a 5-methylcytosine (m5C) MTase that converts GCGC motifs to Gm5CGC. Homologs of M.Hpy99III are found in essentially all H. pylori strains. Most of these homologs are orphan MTases that lack a cognate restriction endonuclease, and their retention in H. pylori strains suggest they have roles in gene regulation. To address this hypothesis, green fluorescent protein (GFP) reporter genes were constructed with six putative promoters that had a GCGC motif in the extended −10 region, and the expression of the reporter genes was compared in wild-type H. pylori G27 and a mutant lacking the M.Hpy99III homolog (M.HpyGIII). The expression of three of the GFP reporter genes was decreased significantly in the mutant lacking M.HpyGIII. In addition, the growth rate of the H. pylori G27 mutant lacking M.HpyGIII was reduced markedly compared to that of the wild type. These findings suggest that the methylation of the GCGC motif in many H. pylori GCGC-containing promoters is required for the robust expression of genes controlled by these promoters, which may account for the universal retention of M.Hpy99III homologs in H. pylori strains.


Author(s):  
Kevin Chiem ◽  
Maria M. Lorenzo ◽  
Javier Rangel-Moreno ◽  
Maria De La Luz Garcia-Hernandez ◽  
Jun-Gyu Park ◽  
...  

Despite the eradication of variola virus (VARV), the causative agent of smallpox, poxviruses still represent an important threat to human health due to their possible use as bioterrorism agents and the emergence of zoonotic poxvirus diseases. Recombinant vaccinia viruses (rVV) expressing easily traceable fluorescent or luciferase reporter genes have significantly contributed to the progress of poxvirus research.


2021 ◽  
Author(s):  
David L. Stern

Perhaps the most valuable single set of resources for genetic studies of Drosophila melanogaster is the collection of multiply-inverted chromosomes commonly known as balancer chromosomes. Balancers prevent the recovery of recombination exchange products within genomic regions included in inversions and allow perpetual maintenance of deleterious alleles in living stocks and the execution of complex genetic crosses. Balancer chromosomes have been generated traditionally by exposing animals to ionizing radiation and screening for altered chromosome structure or for unusual marker segregation patterns. These approaches are tedious and unpredictable, and have failed to produce the desired products in some species. Here I describe transgenic tools that allow targeted chromosome rearrangements in Drosophila species. The key new resources are engineered reporter genes containing introns with yeast recombination sites and enhancers that drive fluorescent reporter genes in multiple body regions. These tools were used to generate a doubly-inverted chromosome 3R in D. simulans that serves as an effective balancer chromosome.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1393
Author(s):  
Krisztina Nikovics ◽  
Anne-Laure Favier

Understanding the processes of inflammation and tissue regeneration after injury is of great importance. For a long time, macrophages have been known to play a central role during different stages of inflammation and tissue regeneration. However, the molecular and cellular mechanisms by which they exert their effects are as yet mostly unknown. While in vitro macrophages have been characterized, recent progress in macrophage biology studies revealed that macrophages in vivo exhibited distinctive features. Actually, the precise characterization of the macrophages in vivo is essential to develop new healing treatments and can be approached via in situ analyses. Nowadays, the characterization of macrophages in situ has improved significantly using antigen surface markers and cytokine secretion identification resulting in specific patterns. This review aims for a comprehensive overview of different tools used for in situ macrophage identification, reporter genes, immunolabeling and in situ hybridization, discussing their advantages and limitations.


2021 ◽  
Author(s):  
Christine Andeme Ondzighi-Assoume ◽  
Bandana Bhusal ◽  
Adam Traore ◽  
Wilson K Ouma ◽  
Margaret Mmbaga ◽  
...  

Bacterial isolates that enhance plant growth and suppress plant pathogens growth are essential tools for reducing pesticide applications in plant production systems. The objectives of this study were to develop a reliable fluorescence-based technique for labeling bacterial isolates selected as biological control agents (BCAs) to allow their direct tracking in the host-plant interactions, understand the BCA localization within their host plants, and the route of plant colonization. Objectives were achieved by developing competent BCAs transformed with two plasmids, pBSU101 and pANIC-10A, containing reporter genes eGFP and pporRFP, respectively. Our results revealed that the plasmid-mediated transformation efficiencies of antibiotic-resistant competent BCAs identified as PSL, IMC8, and PS were up 84%. Fluorescent BCA-tagged reporter genes were associated with roots and hypocotyls but not with leaves or stems and were confirmed by fluoresence microscopy and PCR analyses in colonized Arabidopsis and sorghum. This fluorescence-based technique's high resolution and reproducibility make it a platform-independent system that allows tracking of BCAs spatially within plant tissues, enabling assessment of the movement and niches of BCAs within colonized plants. Steps for producing and transforming competent fluorescent BCAs, as well as the inoculation of plants with transformed BCAs, localization, and confirmation of fluorescent BCAs through fluorescence imaging and PCR, are provided in this manuscript. This study features host-plant interactions and subsequently biological and physiological mechanisms implicated in these interactions. The maximum time to complete all the steps of this protocol is approximately three months.


2021 ◽  
Vol 118 (41) ◽  
pp. e2111593118
Author(s):  
Chengjin Ye ◽  
Kevin Chiem ◽  
Jun-Gyu Park ◽  
Jesus A. Silvas ◽  
Desarey Morales Vasquez ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the current COVID-19 pandemic, is one of the biggest threats to public health. However, the dynamic of SARS-CoV-2 infection remains poorly understood. Replication-competent recombinant viruses expressing reporter genes provide valuable tools to investigate viral infection. Low levels of reporter gene expressed from previous reporter-expressing recombinant (r)SARS-CoV-2 in the locus of the open reading frame (ORF)7a protein have jeopardized their use to monitor the dynamic of SARS-CoV-2 infection in vitro or in vivo. Here, we report an alternative strategy where reporter genes were placed upstream of the highly expressed viral nucleocapsid (N) gene followed by a porcine tescherovirus (PTV-1) 2A proteolytic cleavage site. The higher levels of reporter expression using this strategy resulted in efficient visualization of rSARS-CoV-2 in infected cultured cells and excised lungs or whole organism of infected K18 human angiotensin converting enzyme 2 (hACE2) transgenic mice. Importantly, real-time viral infection was readily tracked using a noninvasive in vivo imaging system and allowed us to rapidly identify antibodies which are able to neutralize SARS-CoV-2 infection in vivo. Notably, these reporter-expressing rSARS-CoV-2, in which a viral gene was not deleted, not only retained wild-type (WT) virus-like pathogenicity in vivo but also exhibited high stability in vitro and in vivo, supporting their use to investigate viral infection, dissemination, pathogenesis, and therapeutic interventions for the treatment of SARS-CoV-2 in vivo.


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Takehiko Nohmi ◽  
Masahiko Watanabe

AbstractChemical carcinogens to humans have been usually identified by epidemiological studies on the relationships between occupational or environmental exposure to the agents and specific cancer induction. In contrast, carcinogenic heterocyclic amines were identified under the principle that mutagens in bacterial in the Ames test are possible human carcinogens. In the 1970s to 1990s, more than 10 heterocyclic amines were isolated from pyrolysates of amino acids, proteins, meat or fish as mutagens in the Ames test, and they were demonstrated as carcinogens in rodents. In the 1980s and 1990s, we have developed derivatives of the Ames tester strains that overexpressed acetyltransferase of Salmonella typhimurium. These strains such as Salmonella typhimurium YG1024 exhibited a high sensitivity to the mutagenicity of the carcinogenic heterocyclic amines. Because of the high sensitivity, YG1024 and other YG strains were used for various purposes, e.g., identification of novel heterocyclic amines, mechanisms of metabolic activation, comparison of mutagenic potencies of various heterocyclic amines, and the co-mutagenic effects. In the 1990s and 2000s, we developed transgenic mice and rats for the detection of mutagenicity of chemicals in vivo. The transgenics were generated by the introduction of reporter genes for mutations into fertilized eggs of mice and rats. We named the transgenics as gpt delta because the gpt gene of Escherichia coli was used for detection of point mutations such as base substitutions and frameshifts and the red/gam genes of λ phage were employed to detect deletion mutations. The transgenic rodents gpt delta and other transgenics with lacI or lacZ as reporter genes have been utilized for characterization of mutagenicity of heterocyclic amines in vivo. In this review, we summarized the in vitro mutagenicity of heterocyclic amines in Salmonella typhimurium YG strains and the in vivo mutagenicity in transgenic rodents. We discussed the relationships between in vitro and in vivo mutagenicity of the heterocyclic amines and their relations to the carcinogenicity.


2021 ◽  
Author(s):  
Kevin Chiem ◽  
María Lorenzo ◽  
Javier Rangel-Moreno ◽  
Maria de la Luz Garcia-Hernandez ◽  
Jun-Gyu Park ◽  
...  

Recombinant viruses expressing reporter genes allow visualization and quantification of viral infections and can be used as valid surrogates to identify the presence of the virus in infected cells and animal models. However, one of the limitations of recombinant viruses expressing reporter genes is the use of either fluorescent or luciferase proteins that are used alternatively for different purposes. Vaccinia virus (VV) is widely used as a viral vector, including recombinant (r)VV singly expressing either fluorescent or luciferase reporter genes that are useful for specific purposes. In this report, we engineered two novel rVV stably expressing both fluorescent (Scarlet or GFP) and luciferase (Nluc) reporter genes from different loci in the viral genome. In vitro, these bi-reporter expressing rVV have similar growth kinetics and plaque phenotype than those of the parental WR VV isolate. In vivo, rVV Nluc/Scarlet and rVV Nluc/GFP effectively infected mice and were easily detected using in vivo imaging systems (IVIS) and ex vivo in the lungs from infected mice. We used these bi-reporter expressing rVV to assess viral pathogenesis, infiltration of immune cells in the lungs, and to directly identify the different subsets of cells infected by VV in the absence of antibody staining. Collectively, these rVV expressing two reporter genes open the feasibility to study the biology of viral infections in vitro and in vivo, including host-pathogen interactions and dynamics or tropism of viral infections. Moreover, they represent an excellent approach for the discovery of new prophylactics and/or therapeutics for the treatment of poxvirus infections.


Sign in / Sign up

Export Citation Format

Share Document