Protein kinase C ? nuclear translocation mediates the occurrence of radioresistance in friend erythroleukemia cells

2002 ◽  
Vol 88 (1) ◽  
pp. 144-151 ◽  
Author(s):  
A. Cataldi ◽  
L. Centurione ◽  
R. Di Pietro ◽  
M. Rapino ◽  
D. Bosco ◽  
...  
1995 ◽  
Vol 151 (2) ◽  
pp. 107-111 ◽  
Author(s):  
Conrad M. Mallia ◽  
James R. Jeter ◽  
Alan P. Fields ◽  
Russell B. Wilson ◽  
Barbara S. Beckman

1994 ◽  
Vol 39 (4) ◽  
pp. 355-363 ◽  
Author(s):  
Z. Oláh ◽  
Cs. Lehel ◽  
W. B. Anderson ◽  
D. E. Brenneman ◽  
D. v. Agoston

1999 ◽  
Vol 277 (3) ◽  
pp. G678-G686 ◽  
Author(s):  
Yusuke Tando ◽  
Hana Algül ◽  
Martin Wagner ◽  
Hans Weidenbach ◽  
Guido Adler ◽  
...  

The eukaryotic transcription factor NF-κB/Rel is activated by a large variety of stimuli. We have recently shown that NF-κB/Rel is induced during the course of caerulein pancreatitis. Here, we show that activation of NF-κB/Rel by caerulein, a CCK analog, requires increasing intracellular Ca2+ levels and protein kinase C activation. Caerulein induces a dose-dependent increase of nuclear NF-κB/Rel binding activity in pancreatic lobules, which is paralleled by degradation of IκBα. IκBβ was only slightly affected by caerulein treatment. Consistent with an involvement of Ca2+, the endoplasmic reticulum-resident Ca2+-ATPase inhibitor thapsigargin activated NF-κB/Rel in pancreatic lobules. The intracellular Ca2+ chelator TMB-8 prevented IκBα degradation and subsequent nuclear translocation of NF-κB/Rel induced by caerulein. BAPTA-AM was less effective. Cyclosporin A, a Ca2+/calmodulin-dependent protein phosphatase (PP2B) inhibitor, decreased caerulein-induced NF-κB/Rel activation and IκBα degradation. The inhibitory effect of bisindolylmaleimide suggests that protein kinase C activity is also required for caerulein-induced NF-κB/Rel activation. These data suggest that Ca2+- as well as protein kinase C-dependent mechanisms are required for caerulein-induced NF-κB/Rel activation.


Author(s):  
Dagmar Scheel-Toellner ◽  
Darrell Pilling ◽  
Arne N. Akbar ◽  
Deborah Hardie ◽  
Giovanna Lombardi ◽  
...  

2006 ◽  
Vol 290 (1) ◽  
pp. H381-H389 ◽  
Author(s):  
Agnes Kenessey ◽  
Elizabeth Ann Sullivan ◽  
Kaie Ojamaa

Maladaptive cardiac hypertrophy results in phenotypic changes in several genes that are thyroid hormone responsive, suggesting that thyroid hormone receptor (TR) function may be altered by cellular kinases, including protein kinase C (PKC) isozymes that are activated in pathological hypertrophy. To investigate the role of PKC signaling in regulating TR function, cultured neonatal rat ventricular myocytes were transduced with adenovirus (Ad) expressing wild-type (wt) or kinase-inactive (dn) PKCα or constitutively active (ca) PKCδ and PKCε. Overexpression of wtPKCα, but not caPKCδ or caPKCε, induced a 28-fold increase ( P < 0.001) in TRα1 protein in the nuclear compartment and a smaller increase in the cytosol. Furthermore, TRα1 mRNA was increased 55-fold ( P < 0.001). This effect of PKCα was dependent on its kinase activity because dnPKCα was without effect. Phorbol 12-myristate 13-acetate (PMA) induced nuclear translocation of endogenous PKCα and Ad-wtPKCα concomitantly with an increase in nuclear TRα1 protein. In contrast, PMA-induced nuclear translocation of dnPKCα resulted in a decrease of TRα1. The increase in TRα1 protein in Ad-wtPKCα-transduced cardiomyocytes was not the result of a reduced rate of protein degradation, nor was the half-life of TRα1 mRNA prolonged, suggesting a PKCα-mediated effect on TRα transcription. Although phosphorylation of ERK1/2 was increased in Ad-wtPKCα-transduced cells, inhibition of phospho-ERK did not change TRα1 expression. PKCα overexpression in cardiomyocytes caused marked repression of triiodothyronine (T3)-responsive genes, α-myosin heavy chain, and the sarcoplasmic reticulum calcium-activated adenosinetriphosphatase SERCA2. Treatment with T3 for 4 h resulted in significant reductions of PKCα in nuclear and cytosolic compartments, and decreased TRα1 mRNA and protein, with normalization of phenotype. These results implicate PKCα as a regulator of TR function and suggest that nuclear localization of PKCα may control transcription of the TRα gene, and consequently, affect cardiac phenotype.


Sign in / Sign up

Export Citation Format

Share Document