Photoaffinity labeling of the N-formyl peptide receptor of human polymorphonuclear leukocytes

1982 ◽  
Vol 20 (2) ◽  
pp. 203-214 ◽  
Author(s):  
Richard G. Painter ◽  
Manfred Schmitt ◽  
Algirdas J. Jesaitis ◽  
Larry A. Sklar ◽  
Klaus Preissner ◽  
...  
Blood ◽  
2010 ◽  
Vol 116 (20) ◽  
pp. 4288-4296 ◽  
Author(s):  
Magali Pederzoli-Ribeil ◽  
Francesco Maione ◽  
Dianne Cooper ◽  
Adam Al-Kashi ◽  
Jesmond Dalli ◽  
...  

Abstract Human polymorphonuclear leukocytes adhesion to endothelial cells during the early stage of inflammation leads to cell surface externalization of Annexin A1 (AnxA1), an effector of endogenous anti-inflammation. The antiadhesive properties of AnxA1 become operative to finely tune polymorphonuclear leukocytes transmigration to the site of inflammation. Membrane bound proteinase 3 (PR3) plays a key role in this microenvironment by cleaving the N terminus bioactive domain of AnxA1. In the present study, we generated a PR3-resistant human recombinant AnxA1—named superAnxA1 (SAnxA1)—and tested its in vitro and in vivo properties in comparison to the parental protein. SAnxA1 bound and activated formyl peptide receptor 2 in a similar way as the parental protein, while showing a resistance to cleavage by recombinant PR3. SAnxA1 retained anti-inflammatory activities in the murine inflamed microcirculation (leukocyte adhesion being the readout) and in skin trafficking model. When longer-lasting models of inflammation were applied, SAnxA1 displayed stronger anti-inflammatory effect over time compared with the parental protein. Together these results indicate that AnxA1 cleavage is an important process during neutrophilic inflammation and that controlling the balance between AnxA1/PR3 activities might represent a promising avenue for the discovery of novel therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document