Proteomic Profiling Reveals the Induction of UPR in Addition to DNA Damage Response in HeLa Cells Treated With the Thiazolo[5,4-b]Quinoline Derivative D3ClP

2016 ◽  
Vol 118 (5) ◽  
pp. 1164-1173 ◽  
Author(s):  
José Carlos Páez-Franco ◽  
Ignacio González-Sánchez ◽  
Nora A. Gutiérrez-Nájera ◽  
Lilián G. Valencia-Turcotte ◽  
Alfonso Lira-Rocha ◽  
...  
2021 ◽  
Author(s):  
Pin-Rui Su ◽  
Li You ◽  
Cecile Beerens ◽  
Karel Bezstarosti ◽  
Jeroen Demmers ◽  
...  

Tumor heterogeneity is an important source of cancer therapy resistance. Single cell proteomics has the potential to decipher protein content leading to heterogeneous cellular phenotypes. Single-Cell ProtEomics by Mass Spectrometry (SCoPE-MS) is a recently developed, promising, unbiased proteomic profiling techniques, which allows profiling several tens of single cells for >1000 proteins per cell. However, a method to link single cell proteomes with cellular behaviors is needed to advance this type of profiling technique. Here, we developed a microscopy-based functional single cell proteomic profiling technology, called FUNpro, to link the proteome of individual cells with phenotypes of interest, even if the phenotypes are dynamic or the cells of interest are sparse. FUNpro enables one i) to screen thousands of cells with subcellular resolution and monitor (intra)cellular dynamics using a custom-built microscope, ii) to real-time analyze (intra)cellular dynamics of individual cells using an integrated cell tracking algorithm, iii) to promptly isolate the cells displaying phenotypes of interest, and iv) to single cell proteomically profile the isolated cells. We applied FUNpro to proteomically profile a newly identified small subpopulation of U2OS osteosarcoma cells displaying an abnormal, prolonged DNA damage response (DDR) after ionizing radiation (IR). With this, we identified PDS5A and PGAM5 proteins contributing to the abnormal DDR dynamics and helping the cells survive after IR.


2021 ◽  
Author(s):  
Tobias Gleich ◽  
Manfredo Quadroni ◽  
Gökhan Yigit ◽  
Bernd Wollnik ◽  
Marcel Huber ◽  
...  

DNA double-strand breaks (DSBs) affect cell survival and genomic integrity. They are repaired by a highly coordinated process called the DNA damage response. Here, we report that the ubiquitously expressed nucleolar E3 ubiquitin ligase TRAF-interacting protein (TRAIP), previously shown to regulate the spindle assembly checkpoint, has an essential role during the DNA damage response. A biotinylation proximity screening assay (BioID) identified Ku80, Ku70, SMARCA5 (SNF2H) and DNA-PKcs as novel TRAIP interactors. Co-immunoprecipitations demonstrated that the interaction of TRAIP with Ku80 was transiently increased while the one with SMARCA5 was strongly decreased after treatment of HeLa cells with neocarzinostatin (NCS). Treatment of fibroblasts from a microcephalic primordial dwarfism patient carrying a hypomorphic TRAIP mutation or shRNA-mediated knockdown of TRAIP in HeLa cells with NCS impaired the activation of ataxia-telangiectasia mutated (ATM), a protein kinase crucial for the DNA damage response. As consequence, the maintenance of γH2AX and Chk2-T68 phosphorylation, two downstream targets of ATM, was significantly abrogated after NCS-inflicted DSBs. DNA repair assays showed that TRAIP inhibits incorrect end utilization during non-homologous end joining. These observations highlight TRAIP as novel regulator of ATM activity in DNA damage signaling.


2020 ◽  
Author(s):  
Anvita Bhargava ◽  
Mathieu Maurin ◽  
Patricia M. Davidson ◽  
Mabel Jouve ◽  
Xavier Lahaye ◽  
...  

AbstractThe Human Immunodeficiency Virus (HIV) enters the nucleus to establish infection. HIV interacts with nuclear pore components to cross the nuclear envelope. In contrast, the role of other proteins of the nuclear envelope in HIV infection is not yet understood. The inner nuclear transmembrane proteins SUN1 and SUN2 connect lamins in the interior of the nucleus to the cytoskeleton in the cytoplasm. Increased levels of SUN1 or SUN2 potently restrict HIV infection through an unresolved mechanism. Here, we find that SUN1 and SUN2 exhibit a differential and viral strain-specific antiviral activity HIV-1 and HIV-2. In macrophages and HeLa cells, HIV-1 and HIV-2 are respectively preferentially inhibited by SUN1 and SUN2. This specificity maps to the nucleoplasmic domain of SUN proteins, which associates with Lamin A/C and participates to the DNA damage response. We find that etoposide, a DNA-damaging drug, stimulates infection. Inhibition of the DNA damage signaling kinase ATR, which induces a DNA damage response, also enhances HIV-1 infection. The proviral effect of ATR inhibition on infection requires the HIV-1 Vpr gene. Depletion of endogenous Lamin A/C, which sensitizes cells to DNA damage, also enhances HIV-1 infection in HeLa cells. SUN1 overexpression neutralizes these proviral effects, while the antiviral effect of SUN2 is rescued by etoposide treatment. Finally, we show that inhibition of HIV-1 infection by overexpressed SUN proteins and endogenous Lamin A/C is associated with reduced internal movements of chromatin and reduced rotations of the nucleus. Altogether, these results highlight distinct antiviral activities of SUN1 and SUN2 and reveal an emerging role of nuclear movements and the DNA damage response in the control of HIV infection by structural components of the nuclear envelope.


2008 ◽  
Vol 295 (6) ◽  
pp. F1678-F1688 ◽  
Author(s):  
Natalia I. Dmitrieva ◽  
Maurice B. Burg

We previously reported that, both in cell culture and in the renal inner medulla in vivo, elevating NaCl increased the number of DNA breaks, which persisted as long as NaCl remained high but were rapidly repaired when NaCl was lowered. Furthermore, those breaks did not induce the DNA repair protein γH2AX or cause activation of the MRN (Mre11, Rad50, Nbs1) complex. In contrast, others recently reported that high NaCl does induce γH2AX and MRN complex formation and concluded that these activities are associated with repair of the DNA (Sheen MR, Kim SW, Jung JY, Ahn JY, Rhee JG, Kwon HM, Woo SK. Am J Physiol Renal Physiol 291: F1014–F1020, 2006). The purpose of the present studies was to resolve the disparity. The important difference is that HeLa cells, which were the main subject of the later report, are much less tolerant of high NaCl than are the mIMCD3 cells, which were our main subject. mIMCD3 cells survive levels of NaCl that kill HeLa cells by apoptosis. Here we demonstrate that in both cell types raising NaCl to a level that the cells survive (higher for mIMCD3 than HeLa) increases DNA breaks without inducing γH2AX or activating the MRN complex and that the DNA breaks persist as long as NaCl remains elevated, but are rapidly repaired when it is lowered. Importantly, in both cell types, raising NaCl further to cause apoptosis activates these DNA damage response proteins and greatly fragments DNA, associated with cell death. We conclude that γH2AX induction and MRN activation in response to high NaCl are associated with apoptosis, not DNA repair.


2020 ◽  
Author(s):  
Xiao Yang ◽  
Peng Zhan ◽  
Shuqiang Feng ◽  
He Ji ◽  
Wenjie Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document