ZEB1 induced‐upregulation of long noncoding RNA ZEB1‐AS1 facilitates the progression of triple negative breast cancer by binding with ELAVL1 to maintain the stability of ZEB1 mRNA

2020 ◽  
Vol 121 (10) ◽  
pp. 4176-4187 ◽  
Author(s):  
Na Luo ◽  
Kejing Zhang ◽  
Xin Li ◽  
Yu Hu
2021 ◽  
Vol 15 (1) ◽  
pp. 43-55
Author(s):  
Chao Yuan ◽  
Hongjun Yuan ◽  
Li Chen ◽  
Miaomiao Sheng ◽  
Wenru Tang

Background: Triple-negative breast cancer (TNBC) is characterized by fast tumor increase, rapid recurrence and natural metastasis. We aimed to identify a genetic signature for predicting the prognosis of TNBC. Materials & methods: We conducted a weighted correlation network analysis of datasets from the Gene Expression Omnibus. Multivariate Cox regression was used to construct a risk score model. Results: The multi-factor risk scoring model was meaningfully associated with the prognosis of patients with TBNC. The predictive power of the model was demonstrated by the time-dependent receiver operating characteristic curve and Kaplan–Meier curve, and verified using a validation set. Conclusion: We established a long noncoding RNA-based model for the prognostic prediction of TNBC.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hibah Shaath ◽  
Radhakrishnan Vishnubalaji ◽  
Ramesh Elango ◽  
Shahryar Khattak ◽  
Nehad M. Alajez

AbstractCumulative evidence suggests added benefit for neoadjuvant chemotherapy (NAC) in a subset of triple-negative breast cancer (TNBC) patients. Herein we identified the long noncoding RNA (lncRNA) transcriptional landscape associated with TNBC resistance to NAC, employing 1758 single cells from three extinction and three persistence TNBC patients. Using Iterative Clustering and Guide-gene Selection (ICGS) and uniform manifold approximation and projection (UMAP) dimensionality reduction analysis, we observed single cells derived from each patient to largely cluster together. Comparing the lncRNA transcriptome from single cells through the course of NAC treatment revealed minimal overlap based on lncRNA transcriptome, suggesting substantial effects of NAC on lncRNA transcription. The differential analysis revealed upregulation of 202 and downregulation of 19 lncRNAs in the persistence group, including upregulation of five different transcripts encoding for the MALAT1 lncRNA. CRISPR/Cas9-mediated MALAT1 promoter deletion in BT-549 TNBC model enhanced sensitivity to paclitaxel and doxorubicin, suggesting a role for MALAT1 in conferring resistance. Mechanistically, whole transcriptome analysis of MALAT1-KO cells revealed multiple affected mechanistic networks as well as oxidative phosphorylation canonical and angiogenesis functional category. Interestingly, lncRNA profiling of MALAT1-depleted TNBC also revealed a number of altered lncRNAs in response to MALAT1 deletion, suggesting a reciprocal relationship between MALAT1 and a number of lncRNAs, including NEAT1, USP3-AS1, and LINC-PINT, in TNBC. Elevated expression of MALAT1, USP3-AS1, and LINC-PINT correlated with worse clinical outcomes in BC patients. Our data revealed the lncRNA transactional portrait and highlighted a complex regulatory network orchestrated by MALAT1 in the context of TNBC resistance to NAC therapy.


2016 ◽  
Vol 36 (12) ◽  
pp. 6289-6296 ◽  
Author(s):  
JEEYEON LEE ◽  
JIN HYANG JUNG ◽  
YEE SOO CHAE ◽  
HO YONG PARK ◽  
WAN WOOK KIM ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document