Could an anisotropic molecular mechanics/dynamics potential account for sigma hole effects in the complexes of halogenated compounds?

2013 ◽  
Vol 34 (13) ◽  
pp. 1125-1135 ◽  
Author(s):  
Krystel El Hage ◽  
Jean-Philip Piquemal ◽  
Zeina Hobaika ◽  
Richard G. Maroun ◽  
Nohad Gresh
1989 ◽  
Vol 86 ◽  
pp. 945-954 ◽  
Author(s):  
F. Bayard ◽  
D. Decoret ◽  
D. Pattou ◽  
J. Royer ◽  
A. Satrallah ◽  
...  

2020 ◽  
Author(s):  
Zenghui Yang

Quantum mechanics/molecular mechanics (QM/MM) methods partition the system into active and environmental regions and treat them with different levels of theory, achieving accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM methods allow on-the-fly changes to the QM/MM partitioning of the system. Many of the available energy-based AP-QM/MM methods partition the system according to distances to pre-chosen centers of active regions. For such AP-QM/MM methods, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to general geometrical or potential-related criteria, extending the range of application of energy-based AP-QM/MM methods to systems where active regions may occur or vanish during the simulation.


Author(s):  
Walker M. Jones ◽  
Aaron G. Davis ◽  
R. Hunter Wilson ◽  
Katherine L. Elliott ◽  
Isaiah Sumner

We present classical molecular dynamics (MD), Born-Oppenheimer molecular dynamics (BOMD), and hybrid quantum mechanics/molecular mechanics (QM/MM) data. MD was performed using the GPU accelerated pmemd module of the AMBER14MD package. BOMD was performed using CP2K version 2.6. The reaction rates in BOMD were accelerated using the Metadynamics method. QM/MM was performed using ONIOM in the Gaussian09 suite of programs. Relevant input files for BOMD and QM/MM are available.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 221.1-222
Author(s):  
E. Eliopoulos ◽  
G. Goulielmos ◽  
M. Matalliotakis ◽  
D. Vlachakis ◽  
T. Niewold ◽  
...  

Background:Gene association studies and genome wide association studies (GWAS) have played a primary role in depicting genetic contributions to systemic lupus erythematosus (SLE) development, while accommodating the exonic polymorphisms on the protein structure level, when available, enhances our understanding of protein function modification or depletion. Linking human genetics with therapeutic targets requires the biological function of the causal gene and variant to be known.Objectives:To investigate recently identified SLE-associated functional gene polymorphisms, such asPARP1,ITGAM, TNFAIP3, NCF1, PON1, IFIH1, SH2B3andTYK2[1-4] by correlation to protein structure and function.Methods:Three-dimensional (3D) homology modeling and molecular mechanics/dynamics studies were applied for the localization of the polymorphisms under study on the respective proteins. The mutants were constructed using molecular modeling with the program Maestro (Schrodinger, LLC), which was also used to analyze the conformational changes caused by the mutation. All figures depicting 3D models were created using the molecular graphics program PyMOL V.2.2 [5].Results:Modeling revealed that rs1136410 SNP encodes the less common polymorphism Val762Ala onPARP1that reduces enzymatic activity of Poly(ADP-ribose) polymerase 1 (Figure 1),ITGAMpolymorphism rs1143679 (Arg77His) on Integrin alpha M, component of the macrophage-1 antigen complex affects protein surface recognition,TNFAIP3rs2230926 polymorphism encodes Cys instead of Phe at residue 127 of the ubiquitin editing A20 protein, while rs201802880 polymorphism of the neutrophil cytosolic factor 1 (NCF1) gene modifies the function of the cytosolic subunit of neutrophil NADPH oxidase with the mutation Arg90His.PON1is involved in the oxidative stress process that cause tissue damage observed in SLE and anti-phospholipid syndrome (APS). ThePON1Gln192Arg mutation (rs662 SNP) affects shape and recognition of the ligand recognition site as part of the evolutionary process, whileIFIH1(rs35667974) helicase C domain1 mutant I923V is located on an essential RNA beta loop interacting directly with the nucleic acid (Figure 2). Finally, the rs3184504 SNP ofSH2B3gene generates mutant Arg262Trp on SH2 adapter protein 3, acting as a signaling pathway involved in autoimmune disorders, while inTYK2 gene, one of the Janus kinases, the rs35018800 producing mutant Ala928Val modifies the ADP binding site.Figure 1.Details of the Val762 interaction where V762A mutation occurs in PARP1protein.Figure 2.Nucleic acid interacting IFIH1 helicase beta-loop where I923V mutation occurs (in purple).Conclusion:Based on several examples, we have tried to define a rational link from SLE-associated gene polymorphisms to structure and to modified function, including metagenomic analysis of SNPs, protein crystallography, protein molecular modeling, molecular mechanics and dynamics. Locating, shaping and understanding the target protein interaction interface plays a decisive role in most cases and provides clues for further pharmacological or medical actions [6].References:[1]Hur JW et al (2006). Rheumatology 45:711-7[2]Maiti AK et al (2014). Hum Mol Genet 23:4161-76[3]Shimane K et al (2010). Arthritis Rheum. 62:574-9[4]Linge P et al (2019). Ann Rheum Dis. 2019 Nov 8. pii: annrheumdis-2019-215820[5]Schrödinger LLC: The PyMOL Molecular Graphics System 2016 version 2.2. Available from: pymol.org/2/support.html[6]Plenge RM et al (2013). Nat Rev Drug Discov 12:581–94Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document