Distance analysis of Patterson calculations and molecular mechanics as aids in structure solution

1992 ◽  
Author(s):  
Catherine Lucia Day
1989 ◽  
Vol 86 ◽  
pp. 945-954 ◽  
Author(s):  
F. Bayard ◽  
D. Decoret ◽  
D. Pattou ◽  
J. Royer ◽  
A. Satrallah ◽  
...  

2020 ◽  
Author(s):  
Zenghui Yang

Quantum mechanics/molecular mechanics (QM/MM) methods partition the system into active and environmental regions and treat them with different levels of theory, achieving accuracy and efficiency at the same time. Adaptive-partitioning (AP) QM/MM methods allow on-the-fly changes to the QM/MM partitioning of the system. Many of the available energy-based AP-QM/MM methods partition the system according to distances to pre-chosen centers of active regions. For such AP-QM/MM methods, I develop an adaptive-center (AC) method that allows on-the-fly determination of the centers of active regions according to general geometrical or potential-related criteria, extending the range of application of energy-based AP-QM/MM methods to systems where active regions may occur or vanish during the simulation.


Author(s):  
Walker M. Jones ◽  
Aaron G. Davis ◽  
R. Hunter Wilson ◽  
Katherine L. Elliott ◽  
Isaiah Sumner

We present classical molecular dynamics (MD), Born-Oppenheimer molecular dynamics (BOMD), and hybrid quantum mechanics/molecular mechanics (QM/MM) data. MD was performed using the GPU accelerated pmemd module of the AMBER14MD package. BOMD was performed using CP2K version 2.6. The reaction rates in BOMD were accelerated using the Metadynamics method. QM/MM was performed using ONIOM in the Gaussian09 suite of programs. Relevant input files for BOMD and QM/MM are available.


2019 ◽  
Author(s):  
Carmen Guguta ◽  
Jan M.M. Smits ◽  
Rene de Gelder

A method for the determination of crystal structures from powder diffraction data is presented that circumvents the difficulties associated with separate indexing. For the simultaneous optimization of the parameters that describe a crystal structure a genetic algorithm is used together with a pattern matching technique based on auto and cross correlation functions.<br>


Author(s):  
Acharya Balkrishna ◽  
Rashmi Mittal ◽  
Vedpriya Arya

Background:: COVID-19 caused by SARS-CoV-2 has been declared as global pandemic by WHO. Comprehensive analysis of this unprecedented outbreak may help to fight against the disease and may play a pivotal role in decreasing the mortality rate linked with it. Papain like protease (PLpro), a multifunctional polyprotein facilitates the replication of SARS-CoV-2 and evades it from the host immunological response by antagonizing cytokines, interferons and may be considered as potential drug target to combat the current pandemic. Methods:: Natural moieties obtained from medicinal plants were analysed for their potency to target PLpro of SARS-CoV-2 by molecular docking study and were compared with synthetic analogs named as remdesivir, chloroquine and favipiravir. The stability of complexes of top hits was analysed by MD Simulation and interaction energy was calculated. Furthermore, average RMSD values were computed and deepsite ligand binding pockets were predicted using Play Molecule. Drug like abilities of these moieties were determined using ADMET and bond distance between the ligand and active site was assessed to predict the strength of interaction. Results:: Nimbocinol (-7.6 Kcal/mol) and sage (-7.3 Kcal/mol) exhibited maximum BA against PLpro SARS-CoV-2 as evident from molecular docking study which was found to be even better than remdesivir (-6.1 Kcal/mol), chloroquine (-5.3 Kcal/mol) and favipiravir (-5.7 Kcal/mol). Both nimbocinol-PLpro and sage-PLpro SARS-CoV-2 complex exhibited stable conformation during MD Simulation of 101ns at 310 K and potential, kinetic and electrostatic interaction energies were computed which was observed to be concordant with results of molecular docking study. RMSD average values were found to be 0.496 ± 0.015 Å and 0.598 ± 0.023 Å for nimbocinol and sage respectively thus revealing that both the deviation and fluctuations during MD Simulation were observed to be least. Deepsite prediction disclosed that both compounds occupied cryptic pockets in receptor and non-bond distance analysis revealed the formation of hydrogen bonds during ligand-receptor interaction. ADMET exploration further validated the drug like properties of these compounds. Conclusion:: Present study revealed that active constituents of Azadirachta indica and Salvia officinalis can be potentially used to target SARS-CoV-2 by hindering its replication process.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Michael Zoller ◽  
Hubert Huppertz

AbstractThe rare earth oxoborates REB5O8(OH)2 (RE = Ho, Er, Tm) were synthesized in a Walker-type multianvil apparatus at a pressure of 2.5 GPa and a temperature of 673 K. Single-crystal X-ray diffraction data provided the basis for the structure solution and refinement. The compounds crystallize in the monoclinic space group C2 (no. 5) and are composed of a layer-like structure containing dreier and sechser rings of corner sharing [BO4]5− tetrahedra. The rare earth metal cations are coordinated between two adjacent sechser rings. Further characterization was performed utilizing IR spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document