Effects of antiplatelet drug dilazep dihydrochloride on anionic sites and extracellular matrix (ecm) components in glomerular basement membrane of stz-induced diabetic rats

1995 ◽  
Vol 9 (6) ◽  
pp. 380-386 ◽  
Author(s):  
Masatoshi Yamamoto ◽  
Mitsumine Fukui ◽  
Takao Kuramoto ◽  
Keiichiro Kabuki ◽  
Yasuhiko Tomino
1983 ◽  
Vol 31 (7) ◽  
pp. 945-951 ◽  
Author(s):  
P J Courtoy ◽  
D H Picton ◽  
M G Farquhar

A double labeling system was used to test the resolution of the indirect immunoperoxidase procedure in the localization of extracellular matrix components. A recognizable antigen, cationized ferritin, was first implanted at specific anionic sites (approximately 60 nm periodicity) in the lamina rara interna and externa of the glomerular basement membrane (GBM) and subsequently localized by immunoperoxidase. The coincidence between the location of reaction product and the ferritin clusters was assessed. When the amount of immunoadsorbed peroxidase and time of exposure to the 3,3'-diaminobenzidine (DAB)-containing medium were limited, discrete deposits of reaction product were observed around individual ferritin clusters. When immunolabeling was increased, the whole GBM was stained, and DAB staining was also found along the endothelial plasmalemma and the epithelial plasmalemma at the base of the foot processes at some distance (greater than 100 nm) from the ferritin clusters in the laminae rarae. These findings indicate that oxidized DAB reaction product can diffuse over long distances and be reabsorbed onto cell membranes. Even under limited incubation conditions some diffusion of DAB reaction product was encountered. The value and limitations of the DAB-peroxidase procedures are discussed.


1988 ◽  
Vol 254 (2) ◽  
pp. 609-612 ◽  
Author(s):  
W H Baricos ◽  
G Murphy ◽  
Y W Zhou ◽  
H H Nguyen ◽  
S V Shah

Neutral metalloproteinases degrade components of the extracellular matrix, including collagen types I-V, fibronectin, laminin and proteoglycan. However, their ability to degrade intact glomerular basement membrane (GBM) has not previously been investigated. Incubation of [3H]GBM (50,000 c.p.m.; pH 7.5; 24 h at 37 degrees C) with purified gelatinase or stromelysin (2 units) resulted in significant GBM degradation: gelatinase, 46 +/- 2.2; stromelysin, 59 +/- 5.8 (means +/- S.E.M.; percentage release of non-sedimentable radioactivity; n = 4). In contrast, 2 units of collagenase released only 5.6 +/- 0.52% (n = 3) of the [3H]GBM radioactivity compared with 2.0 +/- 0.15% (n = 7) released from [3H]GBM incubated alone. Sephadex G-200 gel chromatography of supernatants obtained from incubations of [3H]GBM with either gelatinase or stromelysin confirmed the ability of these enzymes to degrade GBM and revealed both high-(800,000) and relatively low-(less than 20,000) Mr degradation products for both enzymes. GBM degradation by gelatinase and stromelysin was dose-dependent (range 0.02-2.0 units), near maximal between pH 6.0 and 8.6, and was completely inhibited (greater than 95%) by 2 mM-o-phenanthroline. Collagenase (2 units) did not enhance the degradation of GBM by either gelatinase (0.02 or 0.2 unit) or stromelysin (0.02 or 0.2 unit). Our results indicate that metalloproteinase-mediated GBM degradation by neutrophils and glomeruli may be attributable to gelatinase (neutrophils) and/or stromelysin (glomeruli) and suggest an important role for these proteinases in glomerular pathophysiology.


Nephron ◽  
1991 ◽  
Vol 59 (3) ◽  
pp. 500-501 ◽  
Author(s):  
Ashio Yoshimura ◽  
Terukuni Ideura ◽  
Kiyoko Nakano ◽  
Hiroaki Oniki ◽  
Yuichi Sugisaki ◽  
...  

Nephron ◽  
1992 ◽  
Vol 61 (1) ◽  
pp. 117-118
Author(s):  
Shouichi Fujimoto ◽  
Yoshitaka Yamamoto ◽  
Shuichi Hisanaga ◽  
Naoto Yokota ◽  
Tanenao Eto

1982 ◽  
Vol 242 (4) ◽  
pp. F385-F389
Author(s):  
M. P. Cohen ◽  
M. L. Surma ◽  
V. Y. Wu

Glomerular basement membrane (GBM) was labeled in vivo by the injection of tracer amounts of tritiated proline into normal and streptozotocin-diabetic rats. Basement membrane biosynthesis and turnover were determined from the specific activities of proline and hydroxyproline in samples purified following osmotic lysis of glomeruli isolated 4 h to 12 days after injection. Peak radiolabeling of normal and diabetic GBM occurred within 24-48 h and 48-72 h, respectively, and, when corrected for differences in the serum proline specific activities, [3H]proline incorporation was greater in diabetic than in normal samples. In contrast to the subsequent time-dependent progressive decline in radiolabeling in basement membranes from normal animals, specific activities of proline and hydroxyproline in diabetic glomerular basement membrane did not change significantly over the same period of observation. Renal cortical mass and glomerular basement membrane collagen content were preserved in diabetic animals despite loss of body weight. The findings are compatible with prolongation of glomerular basement membrane turnover in experimental diabetes, and suggest that diminished degradation contributes to the accumulation of glomerular basement membrane that is characteristic of chronic diabetes.


2000 ◽  
Vol 62 (11) ◽  
pp. 1193-1195 ◽  
Author(s):  
Junichi KAMIIE ◽  
Kinji SHIROTA ◽  
Munetaka YAMAKI ◽  
Hitoshi KITAGAWA ◽  
Masahiko WASAKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document