scholarly journals Manual versus automated streaking system in clinical microbiology laboratory: Performance evaluation of Previ Isola for blood culture and body fluid samples

2018 ◽  
Vol 32 (5) ◽  
pp. e22373 ◽  
Author(s):  
Qute Choi ◽  
Hyun Jin Kim ◽  
Jong Wan Kim ◽  
Gye Cheol Kwon ◽  
Sun Hoe Koo
2016 ◽  
Vol 54 (6) ◽  
pp. 1418-1424 ◽  
Author(s):  
Jennifer Dien Bard ◽  
Erin McElvania TeKippe

Identification of bloodstream infections is among the most critical tasks performed by the clinical microbiology laboratory. While the criteria for achieving an adequate blood culture specimen in adults have been well described, there is much more ambiguity in pediatric populations. This minireview focuses on the available pediatric literature pertaining to the collection of an optimal blood culture specimen, including timing, volume, and bottle selection, as well as rapid diagnostic approaches and their role in the management of pediatric bloodstream infections.


2019 ◽  
Vol 33 (1) ◽  
Author(s):  
Gary V. Doern ◽  
Karen C. Carroll ◽  
Daniel J. Diekema ◽  
Kevin W. Garey ◽  
Mark E. Rupp ◽  
...  

In this review, we present a comprehensive discussion of matters related to the problem of blood culture contamination. Issues addressed include the scope and magnitude of the problem, the bacteria most often recognized as contaminants, the impact of blood culture contamination on clinical microbiology laboratory function, the economic and clinical ramifications of contamination, and, perhaps most importantly, a systematic discussion of solutions to the problem.


2017 ◽  
Vol 56 (3) ◽  
Author(s):  
Stephen M. Brecher

ABSTRACT Our mostly manual, agar-based clinical microbiology laboratory is slowly but steadily being redefined by automation and innovation. Ironically, the oldest test, the Gram stain test, is still manually read and interpreted by trained personnel. In a proof-of-concept study, Smith et al. (J. Clin. Microbiol. 56:e01521-17, 2018, https://doi.org/10.1128/JCM.01521-17 ) used computer imaging with a deep convolutional neural network to examine and interpret Gram-stained slides from positive blood culture bottles. In light of the shortage of medical technologists/microbiologists and the need for results from positive blood culture bottles 24/7, this paper paves the way for the next innovations for the clinical microbiology laboratory of the future.


Author(s):  
Kami D Kies ◽  
Amber S Thomas ◽  
Matthew J Binnicker ◽  
Kelli L Bashynski ◽  
Robin Patel

Abstract Enteroviral meningitis is seasonal, typically exhibiting a rise in prevalence in late summer/early fall. Based on clinical microbiology laboratory testing data of cerebrospinal fluid, the expected August/September/October peak in enteroviral meningitis did not occur in 2020, possibly related to COVID-19 mitigation strategies.


Pathology ◽  
2020 ◽  
Vol 52 (7) ◽  
pp. 754-759 ◽  
Author(s):  
Eloise Williams ◽  
Katherine Bond ◽  
Brian Chong ◽  
Dawn Giltrap ◽  
Malcolm Eaton ◽  
...  

2016 ◽  
Vol 54 (6) ◽  
pp. 1416-1417 ◽  
Author(s):  
Richard B. Thomson

The Gram stain is one of the most commonly performed tests in the clinical microbiology laboratory, yet it is poorly controlled and lacks standardization. It was once the best rapid test in microbiology, but it is no longer trusted by many clinicians. The publication by Samuel et al. (J. Clin. Microbiol. 54:1442–1447, 2016,http://dx.doi.org/10.1128/JCM.03066-15) is a start for those who want to evaluate and improve Gram stain performance. In an age of emerging rapid molecular results, is the Gram stain still relevant? How should clinical microbiologists respond to the call to reduce Gram stain error rates?


2011 ◽  
Vol 49 (6) ◽  
pp. 2293-2295 ◽  
Author(s):  
Alejandro Sánchez-Chardi ◽  
Francesc Olivares ◽  
Thomas F. Byrd ◽  
Esther Julián ◽  
Cecilia Brambilla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document