scholarly journals Segmental maternal uniparental disomy of chromosome 7q in a patient with congenital chloride diarrhea

Author(s):  
Juanjuan Lyu ◽  
Zhuo Huang ◽  
Hongbo Chen ◽  
Xiaomei Sun ◽  
Ying Liu ◽  
...  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Robert Meyer ◽  
Matthias Begemann ◽  
Christian Thomas Hübner ◽  
Daniela Dey ◽  
Alma Kuechler ◽  
...  

Abstract Background Silver-Russell syndrome (SRS) is an imprinting disorder which is characterised by severe primordial growth retardation, relative macrocephaly and a typical facial gestalt. The clinical heterogeneity of SRS is reflected by a broad spectrum of molecular changes with hypomethylation in 11p15 and maternal uniparental disomy of chromosome 7 (upd(7)mat) as the most frequent findings. Monogenetic causes are rare, but a clinical overlap with numerous other disorders has been reported. However, a comprehensive overview on the contribution of mutations in differential diagnostic genes to phenotypes reminiscent to SRS is missing due to the lack of appropriate tests. With the implementation of next generation sequencing (NGS) tools this limitation can now be circumvented. Main body We analysed 75 patients referred for molecular testing for SRS by a NGS-based multigene panel, whole exome sequencing (WES), and trio-based WES. In 21/75 patients a disease-causing variant could be identified among them variants in known SRS genes (IGF2, PLAG1, HMGA2). Several patients carried variants in genes which have not yet been considered as differential diagnoses of SRS. Conclusions WES approaches significantly increase the diagnostic yield in patients referred for SRS testing. Several of the identified monogenetic disorders have a major impact on clinical management and genetic counseling.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 588
Author(s):  
Pierpaola Tannorella ◽  
Daniele Minervino ◽  
Sara Guzzetti ◽  
Alessandro Vimercati ◽  
Luciano Calzari ◽  
...  

Silver Russell Syndrome (SRS, MIM #180860) is a rare growth retardation disorder in which clinical diagnosis is based on six features: pre- and postnatal growth failure, relative macrocephaly, prominent forehead, body asymmetry, and feeding difficulties (Netchine–Harbison clinical scoring system (NH-CSS)). The molecular mechanisms consist in (epi)genetic deregulations at multiple loci: the loss of methylation (LOM) at the paternal H19/IGF2:IG-DMR (chr11p15.5) (50%) and the maternal uniparental disomy of chromosome 7 (UPD(7)mat) (10%) are the most frequent causes. Thus far, about 40% of SRS remains undiagnosed, pointing to the need to define the rare mechanisms in such a consistent fraction of unsolved patients. Within a cohort of 176 SRS with an NH-CSS ≥ 3, a molecular diagnosis was disclosed in about 45%. Among the remaining patients, we identified in 3 probands (1.7%) with UPD(20)mat (Mulchandani–Bhoj–Conlin syndrome, OMIM #617352), a molecular mechanism deregulating the GNAS locus and described in 21 cases, characterized by severe feeding difficulties associated with failure to thrive, preterm birth, and intrauterine/postnatal growth retardation. Our patients share prominent forehead, feeding difficulties, postnatal growth delay, and advanced maternal age. Their clinical assessment and molecular diagnostic flowchart contribute to better define the characteristics of this rare imprinting disorder and to rank UPD(20)mat as the fourth most common pathogenic molecular defect causative of SRS.


1998 ◽  
Vol 63 (4) ◽  
pp. 1216-1220 ◽  
Author(s):  
L. Leigh Field ◽  
Rose Tobias ◽  
Wendy P. Robinson ◽  
Richard Paisey ◽  
Stephen Bain

2002 ◽  
Vol 22 (15) ◽  
pp. 5585-5592 ◽  
Author(s):  
Yang Soo Moon ◽  
Cynthia M. Smas ◽  
Kichoon Lee ◽  
Josep A. Villena ◽  
Kee-Hong Kim ◽  
...  

ABSTRACT Preadipocyte factor 1 (Pref-1/Dlk1) inhibits in vitro adipocyte differentiation and has been recently reported to be a paternally expressed imprinted gene at human chromosome 14q32. Studies on human chromosome 14 deletions and maternal uniparental disomy (mUPD) 14 suggest that misexpression of a yet-to-be-identified imprinted gene or genes present on chromosome 14 causes congenital disorders. We generated Pref-1 knockout mice to assess the role of Pref-1 in growth and in vivo adipogenesis and to determine the contribution of Pref-1 in mUPD. Pref-1-null mice display growth retardation, obesity, blepharophimosis, skeletal malformation, and increased serum lipid metabolites. Furthermore, the phenotypes observed in Pref-1-null mice are present in heterozygotes that harbor a paternally inherited, but not in those with a maternally inherited pref-1-null allele. Our results demonstrate that Pref-1 is indeed paternally expressed and is important for normal development and for homeostasis of adipose tissue mass. We also suggest that Pref-1 is responsible for most of the symptoms observed in mouse mUPD12 and human mUPD14. Pref-1-null mice may be a model for obesity and other pathologies of human mUPD14.


Author(s):  
Mark Oette ◽  
Marvin J. Stone ◽  
Hendrik P. N. Scholl ◽  
Peter Charbel Issa ◽  
Monika Fleckenstein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document